It was found that there lies a linear relationship among the thermodynamic data of complicate inorganic compounds with similar components. A method for estimating the thermodynamic data of complicate compound and a th...It was found that there lies a linear relationship among the thermodynamic data of complicate inorganic compounds with similar components. A method for estimating the thermodynamic data of complicate compound and a thermodynamic database involving alumina production were developed. It was found that the alumina digestion rate of activated diasporic bauxite by means of heat field increased much due to the structure aberration, i.e, from perfect structure to unstable corundum. The results from thermodynamic calculation and experiments showed that it was feasible for desilication at atmospheric pressure, and the effects on equilibrium concentration of SiO 2 included temperature, mole ratio of Na 2O/Al 2O 3 ( α k), caustic and Na + concentration. The technology of desilication of green liquor at atmosphere and separation of alumina and silica in aluminate solution with high concentration were established. The reaction activity of compounds containing silica and the converting law among compounds were studied, and the prototype technology of desilication products by hydrotreatment was also developed.展开更多
Fly ash was used to prepare alumina and silica white, The 3 stages of the process are as follows: ammonium sulfate calcining, acid leaching and alkali dissolution. The optimum conditions for the experiments to determi...Fly ash was used to prepare alumina and silica white, The 3 stages of the process are as follows: ammonium sulfate calcining, acid leaching and alkali dissolution. The optimum conditions for the experiments to determine are as follows: molar ratio of (NH4)2SO4/Al2O3 is 6, the calcining time is 2h, he H2SO4 concentration is 20%, the leaching temperature is 80℃ and dissolution duration is 2h, the ratio of solution and solid reaction material is 6 for ammonium sulfate calcining and acid leaching stage, reaction time 30min, ratio of liquid to ore 5∶1, alkali concentration 45% and reaction temperature 95 ℃for the alkali dissolution stage. Under these conditions, the total leaching efficiencies of Al2O3 and SiO2 are 78.86% and 95%, respectively. The quality of the main products alumina and silica white can meet the national standards of GB/T24487-2009 and GB10517-89, respectively.展开更多
Si/Al composite hollow spheres with a surface hole were prepared with the co-axial microchannel in a one-step method. It is easy to use the technique for size control and continuous operation. At Si/Al ratio between 4...Si/Al composite hollow spheres with a surface hole were prepared with the co-axial microchannel in a one-step method. It is easy to use the technique for size control and continuous operation. At Si/Al ratio between 4 and 5, a hole forms on the surface, due to the fast gelation process and high viscosity of the sol. Scanning electron microscopy, nitrogen adsorption–desorption isotherms, and mercury intrusion method are used to characterize the samples. The hole size is 40–150 μm and the particle size is 450–600 μm. The size can be adjusted by the flow rate of the oil phase.展开更多
Polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi batch reactor in the temperature range 400℃~550℃ in order to obtain suitable liquid fuels.The dependenci...Polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi batch reactor in the temperature range 400℃~550℃ in order to obtain suitable liquid fuels.The dependencies between process temperatures,types of catalyst,feed compositions and product yields of the obtained fuel fractions were found.It was observed that up to 450℃ thermal cracking temperature,the major product of pyrolysis was liquid oil and the major product at other higher temperatures(475℃~550℃) are viscous liquid or wax and the highest yield of pyrolysis product is 82.85% by weight at 500℃.Use of kaoline and silica alumina decreased the reaction time and increased the yield of liquid fraction.Again the major pyrolysis product in catalytic pyrolysis at all temperatures was low viscous liquid oil.Silica alumina was found better as compared to kaoline in liquid yield and in reducing the reaction temperature.The maximum oil yield using silica alumina and kaoline catalyst are 91% and 89.5% respectively.On the basis of the obtained results hypothetical continuous process of waste polypropylene plastics processing for engine fuel production can be presented.展开更多
During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle w...During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials.展开更多
The reduction of volume of silica glass during aluminum reactive penetration was observed experimentally. The liquid aluminum infiltrates easily into the cavities while the released silicon is solved in the liquid alu...The reduction of volume of silica glass during aluminum reactive penetration was observed experimentally. The liquid aluminum infiltrates easily into the cavities while the released silicon is solved in the liquid aluminum, and Al/Al2O3 composites could be obtained. The experimental results show that Al/Al2O3 composites can be transformed into Al2O3 grains by oxygen in the cavities of Al/Al2O3 composites during the longer penetration treatment. The formation of alumina is a sintering process, in which liquid aluminum, particulate alumina and oxygen play an important role. The transformtion process has shown that there is a relationship of σAl2O3-Al2O3 2O3-Al, where σAl2O3-Al2O3 is the grain boundary energy of alumina, and σAl2O3-Al is the interface energy between aluminum and alumina. The formation temperature by aluminum reactive penetration is much lower than that by sintering.展开更多
The catalytic performance of Mo supported on hierarchical alumina–silica(Si/Al = 15) with Mo loadings of 3, 6 and 15 wt% was investigated for the oxidative desulfurization(ODS) of model and real oil samples. Hierarch...The catalytic performance of Mo supported on hierarchical alumina–silica(Si/Al = 15) with Mo loadings of 3, 6 and 15 wt% was investigated for the oxidative desulfurization(ODS) of model and real oil samples. Hierarchical alumina–silica(h Al–Si) was synthesized by economical and ecofriendly silicate-1 seed-induced route using cetyltrimethylammonium bromide(CTAB) as mesoporogen. The effect of CTAB on the structure of catalyst was studied by characterization techniques. The results revealed that 6%Mo/h Al–Si had the highest sulfur removal compared to the other catalyst loadings. The effect of operating parameters was evaluated using Box–Behnken experimental design. The optimal desulfurization conditions with the 6%Mo/h Al–Si catalyst were determined at oxidation temperature of 67 ℃, oxidation time of 42 min, H2O2/S molar ratio of 8 and catalyst dosage of 0.008 g·ml^-1 for achieving a conversion of 95%. Under optimal conditions, different sulfur-containing compounds with initial concentration of 1000 ppm, Dibenzothiophene(DBT), Benzothiophene(BT) and Thiophen(Th), showed the catalytic oxidation reactivity in the order of DBT > BT>Th. According to the regeneration experiments, the 6%Mo/h Al–Si catalyst was reused 4 times with a little reduction in the performance. Also, the total sulfur content of gasoline and diesel after ODS process reached 156.6 and 4592.2 ppm, respectively.展开更多
Hydration mechanism of tabular alumina carbon composites reinforced by Al4C3 in situ reaction with Mg and Al was researched in water steam using super automatic thermostatic water bath from 25 ℃ to 85 ℃. It is shown...Hydration mechanism of tabular alumina carbon composites reinforced by Al4C3 in situ reaction with Mg and Al was researched in water steam using super automatic thermostatic water bath from 25 ℃ to 85 ℃. It is shown that hydration mechanism of the composites is chemical reaction control at 44.3 ℃-84 ℃ in H2O(g). The hydration was controlled by diffusion from 24.7 ℃ to 33 ℃. The ratio of added Mg/Al influences the HMOR of the composites.The mechanism of HMOR of the composites with different ratios of Mg/Al can be discovered by means of SEM analysis. The active Mg/Al powder and flake graphite inside give the composites outstanding hot strength resulting from the interlocking structure of Al4C3 crystals at high temperature. Besides, the matrix changes into the Al4C3 with high refractoriness. The method of preventing the hydration of tabular alumina carbon composites reinforced by Al4C3 in situ reaction was immersed in the wax at suitable temperature or storing them below 33 ℃ in a dry place or storing them with paraffin-coating.展开更多
Nanocrystalline powders of w(Al2O3)=95%, w(TiO2)=3%, and w(SiO2)=2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat...Nanocrystalline powders of w(Al2O3)=95%, w(TiO2)=3%, and w(SiO2)=2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D. C. plasma was used to spray the agglomerated nanocrystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Exper-imental results show that the agglomerated nanocrystalline particles are spherical, with a size from (10 - 90)μm. The flow ability of the nanocrystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nanostructure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nanostructured coatings. Although the nanostructured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nanostructured ceramic coatings is significantly improved.展开更多
Five mixtures (M1 to M5) of silica-alumina geomaterials and two varieties of alumina (AP and AR) were used for the elaboration of mullite refractory materials between 1500℃ and 1600℃. An X-ray diffraction (XRD) anal...Five mixtures (M1 to M5) of silica-alumina geomaterials and two varieties of alumina (AP and AR) were used for the elaboration of mullite refractory materials between 1500℃ and 1600℃. An X-ray diffraction (XRD) analysis showed that the refractory samples are composed of mullite, corundum and silica. The length of the mullite crystals was measured by a method of image analysis of scanning electron microscopy (SEM). Chemical and mechanical properties of these materials were investigated and correlated with their microstructure. Resistance towards Acid Attack test showed that the refractory samples present good resistance, as well as, the alumina powder AR obtained from waste of silica-alumina bricks proves to be efficient for an eventual use.展开更多
Alumina-silica composite coatings were prepared on the surface of graphite paper by CVD using AlCl3/SiCl4/H2/CO2 as precursor in the temperature range of 300 to 550℃. XRD and SEM were used to examine the phase comp...Alumina-silica composite coatings were prepared on the surface of graphite paper by CVD using AlCl3/SiCl4/H2/CO2 as precursor in the temperature range of 300 to 550℃. XRD and SEM were used to examine the phase composition and the microstructure of the coating, respectively. The results indicate that the dense, uniform and adherent alumina-silica composite coating can be prepared on graphite paper substrate by CVD at 550℃ using SiCl4/AlCl3/CO2/H2. The alumina-silica composite coating is composed of a number of spherical particles. Each particle is composed of a number of fine-particle. The phase of the 550℃ composite coating includes γ-alumina containing amorphous silica. The content of Cl element in composite coating decreases with the increase of the deposition temperature. The analysis results of morphology and growth mechanisms of the CVD alumina-silica indicate that the condensation within the boundary layer will be more likely to lead to the formation of gel-particles. The gel-particles size decreases with the increase of deposition temperature in the range of 300550℃. Surface reaction is the main path to generate deposition products at 550℃.展开更多
研究了无有机胺醇水体系低硅铝比ZSM-5沸石的绿色合成方法。在无有机胺模板剂和不加晶种的醇水体系中,一步合成了形貌均一的小晶粒聚集体低硅铝比ZSM-5沸石,考察了合成体系中各配料的含量以及晶化温度对合成低硅铝比ZSM-5沸石的影响。利...研究了无有机胺醇水体系低硅铝比ZSM-5沸石的绿色合成方法。在无有机胺模板剂和不加晶种的醇水体系中,一步合成了形貌均一的小晶粒聚集体低硅铝比ZSM-5沸石,考察了合成体系中各配料的含量以及晶化温度对合成低硅铝比ZSM-5沸石的影响。利用XRD、FTIR、SEM、N_(2)吸附-脱附、^(27)Al MAS NMR和^(29)Si MAS NMR等方法对合成的ZSM-5沸石进行表征。实验结果表明,当n(Si)∶n(Al)=20,n(Na_(2)O)∶n(SiO_(2))=0.071,n(C_(2)H_(5)OH)∶n(SiO_(2))=1.77,晶化温度为160℃时,可合成具有高结晶度的纯相ZSM-5沸石。^(27)Al MAS NMR表征结果显示,合成的ZSM-5沸石主要含有骨架四配位铝,无非骨架铝。合成的ZSM-5沸石的比表面积和微孔孔体积分别为384 m^(2)/g和0.14 cm^(3)/g,总酸量达到789μmol/g,骨架n(Si)∶n(Al)=14.4。展开更多
Increasing world request for energy has made oil extraction from reservoirs more desirable.Many novel EOR methods have been proposed and utilized for this purpose.Using nanocomposites in chemical flooding is one of th...Increasing world request for energy has made oil extraction from reservoirs more desirable.Many novel EOR methods have been proposed and utilized for this purpose.Using nanocomposites in chemical flooding is one of these novel methods.In this study,we investigated the impact of six injection solutions on the recovery of light and heavy oil with the presence of two different brines as formation water using a homogenous glass micromodel.All of the injection solutions were based on a 40,000 ppm Na Cl synthetic seawater(SSW),one of which was additive free and the others were prepared by dispersing nanocomposite silica-based polyacrylamide(NCSP),nanocomposite alumina-based polyacrylamide(NCAP),the combination of both nanocomposites silica and alumina based on polyacrylamide(NCSAP),surfactant(CTAB)and polyacrylamide(PAM)with a concentration of 1000 ppm as additives.The Stability of nanocomposites was tested against the salinity of the brine and temperature using salinity and DSC tests which were successful.Alongside stability tests,IFT,contact angle and oil recovery measurements were made.Visual results revealed that in addition to the effect of silica and alumina nanocomposite in reducing interfacial tension and wettability alteration,control of mobility ratio caused a major improvement in sweeping efficiency and oil recovery.According to the sweeping behavior of injected fluids,it was found that the main effect of surfactant was wettability alteration,for polyacrylamide was mobility control and for nanocomposites was the reduction of interfacial tension between oil and injected fluid,which was completely analyzed and checked out.Also,NCSAP with 95.83%and 70.33%and CTAB with 84.35%and 91%have the highest light oil recoveries at 250,000 ppm and 180,000 ppm salinity,respectively which is related to the superposition effect of interactions between nanocomposites,solution and oil.Based on our results it can be concluded that the most effective mechanism in oil recovery was IFT reduction which was done by CTAB reduction also by using a polymer-based nanocomposite such as NCSAP and adding the mobility control factor,the oil recovery can be further enhanced.In the case of heavy oil recovery,it can be concluded that the mobility control played a much more effective role when the PAM performed almost similarly to the CTAB and other nanocomposites with a recovery factor of around 17%.In this study,we tried to investigate the effect of different injection solutions and their related mechanisms on oil recovery.展开更多
文摘It was found that there lies a linear relationship among the thermodynamic data of complicate inorganic compounds with similar components. A method for estimating the thermodynamic data of complicate compound and a thermodynamic database involving alumina production were developed. It was found that the alumina digestion rate of activated diasporic bauxite by means of heat field increased much due to the structure aberration, i.e, from perfect structure to unstable corundum. The results from thermodynamic calculation and experiments showed that it was feasible for desilication at atmospheric pressure, and the effects on equilibrium concentration of SiO 2 included temperature, mole ratio of Na 2O/Al 2O 3 ( α k), caustic and Na + concentration. The technology of desilication of green liquor at atmosphere and separation of alumina and silica in aluminate solution with high concentration were established. The reaction activity of compounds containing silica and the converting law among compounds were studied, and the prototype technology of desilication products by hydrotreatment was also developed.
文摘Fly ash was used to prepare alumina and silica white, The 3 stages of the process are as follows: ammonium sulfate calcining, acid leaching and alkali dissolution. The optimum conditions for the experiments to determine are as follows: molar ratio of (NH4)2SO4/Al2O3 is 6, the calcining time is 2h, he H2SO4 concentration is 20%, the leaching temperature is 80℃ and dissolution duration is 2h, the ratio of solution and solid reaction material is 6 for ammonium sulfate calcining and acid leaching stage, reaction time 30min, ratio of liquid to ore 5∶1, alkali concentration 45% and reaction temperature 95 ℃for the alkali dissolution stage. Under these conditions, the total leaching efficiencies of Al2O3 and SiO2 are 78.86% and 95%, respectively. The quality of the main products alumina and silica white can meet the national standards of GB/T24487-2009 and GB10517-89, respectively.
基金Supported by the National Basic Research Foundation of China(2013CB733600)the National Natural Science Foundation(20976096,21036002)the Innovative Science and Technology Foundation of Petro China(2011D-5006-0407)
文摘Si/Al composite hollow spheres with a surface hole were prepared with the co-axial microchannel in a one-step method. It is easy to use the technique for size control and continuous operation. At Si/Al ratio between 4 and 5, a hole forms on the surface, due to the fast gelation process and high viscosity of the sol. Scanning electron microscopy, nitrogen adsorption–desorption isotherms, and mercury intrusion method are used to characterize the samples. The hole size is 40–150 μm and the particle size is 450–600 μm. The size can be adjusted by the flow rate of the oil phase.
文摘Polypropylene was cracked thermally and catalytically in the presence of kaoline and silica alumina in a semi batch reactor in the temperature range 400℃~550℃ in order to obtain suitable liquid fuels.The dependencies between process temperatures,types of catalyst,feed compositions and product yields of the obtained fuel fractions were found.It was observed that up to 450℃ thermal cracking temperature,the major product of pyrolysis was liquid oil and the major product at other higher temperatures(475℃~550℃) are viscous liquid or wax and the highest yield of pyrolysis product is 82.85% by weight at 500℃.Use of kaoline and silica alumina decreased the reaction time and increased the yield of liquid fraction.Again the major pyrolysis product in catalytic pyrolysis at all temperatures was low viscous liquid oil.Silica alumina was found better as compared to kaoline in liquid yield and in reducing the reaction temperature.The maximum oil yield using silica alumina and kaoline catalyst are 91% and 89.5% respectively.On the basis of the obtained results hypothetical continuous process of waste polypropylene plastics processing for engine fuel production can be presented.
基金supported by National Natural Science Foundation of China (No.50574083)
文摘During the plasma spheroidization process powders undergo different changes in their microstructures and crystal phases. In this paper, simple calculation of heat transfer between the plasma and a suspended particle was performed based on three hypotheses for the purpose of guiding experiments. Experimental investigation of the crystal phases and microstructural changes during the plasma processing was made using silica, alumina and nickel powders as starting materials. It has been revealed from the experimental results that these materials undergo different changes in crystal phases and microstructures, and these changes are essentially determined by the structures, properties and aggregate states of the starting materials.
基金This project was supported by the National Natural Science Foundation of China!(Grant No.59474013)
文摘The reduction of volume of silica glass during aluminum reactive penetration was observed experimentally. The liquid aluminum infiltrates easily into the cavities while the released silicon is solved in the liquid aluminum, and Al/Al2O3 composites could be obtained. The experimental results show that Al/Al2O3 composites can be transformed into Al2O3 grains by oxygen in the cavities of Al/Al2O3 composites during the longer penetration treatment. The formation of alumina is a sintering process, in which liquid aluminum, particulate alumina and oxygen play an important role. The transformtion process has shown that there is a relationship of σAl2O3-Al2O3 2O3-Al, where σAl2O3-Al2O3 is the grain boundary energy of alumina, and σAl2O3-Al is the interface energy between aluminum and alumina. The formation temperature by aluminum reactive penetration is much lower than that by sintering.
文摘The catalytic performance of Mo supported on hierarchical alumina–silica(Si/Al = 15) with Mo loadings of 3, 6 and 15 wt% was investigated for the oxidative desulfurization(ODS) of model and real oil samples. Hierarchical alumina–silica(h Al–Si) was synthesized by economical and ecofriendly silicate-1 seed-induced route using cetyltrimethylammonium bromide(CTAB) as mesoporogen. The effect of CTAB on the structure of catalyst was studied by characterization techniques. The results revealed that 6%Mo/h Al–Si had the highest sulfur removal compared to the other catalyst loadings. The effect of operating parameters was evaluated using Box–Behnken experimental design. The optimal desulfurization conditions with the 6%Mo/h Al–Si catalyst were determined at oxidation temperature of 67 ℃, oxidation time of 42 min, H2O2/S molar ratio of 8 and catalyst dosage of 0.008 g·ml^-1 for achieving a conversion of 95%. Under optimal conditions, different sulfur-containing compounds with initial concentration of 1000 ppm, Dibenzothiophene(DBT), Benzothiophene(BT) and Thiophen(Th), showed the catalytic oxidation reactivity in the order of DBT > BT>Th. According to the regeneration experiments, the 6%Mo/h Al–Si catalyst was reused 4 times with a little reduction in the performance. Also, the total sulfur content of gasoline and diesel after ODS process reached 156.6 and 4592.2 ppm, respectively.
基金Funded by the National Torch Plan of China(No.2005EB031110)the Key Scientific and Technical Innovation Project of Xi’an University of Architecture and Technology(No.zx 0402)
文摘Hydration mechanism of tabular alumina carbon composites reinforced by Al4C3 in situ reaction with Mg and Al was researched in water steam using super automatic thermostatic water bath from 25 ℃ to 85 ℃. It is shown that hydration mechanism of the composites is chemical reaction control at 44.3 ℃-84 ℃ in H2O(g). The hydration was controlled by diffusion from 24.7 ℃ to 33 ℃. The ratio of added Mg/Al influences the HMOR of the composites.The mechanism of HMOR of the composites with different ratios of Mg/Al can be discovered by means of SEM analysis. The active Mg/Al powder and flake graphite inside give the composites outstanding hot strength resulting from the interlocking structure of Al4C3 crystals at high temperature. Besides, the matrix changes into the Al4C3 with high refractoriness. The method of preventing the hydration of tabular alumina carbon composites reinforced by Al4C3 in situ reaction was immersed in the wax at suitable temperature or storing them below 33 ℃ in a dry place or storing them with paraffin-coating.
基金This work was supported by the Prionrity Development Program of the Hunan Resources Ministry of China for Oversea Students.
文摘Nanocrystalline powders of w(Al2O3)=95%, w(TiO2)=3%, and w(SiO2)=2%, were reprocessed into agglomerated particles for plasma spraying, by using consecutive steps of ball milling, slurry forming, spray drying, and heat treatment. D. C. plasma was used to spray the agglomerated nanocrystalline powders, and resultant coatings were deposited on the substrate of stainless steel. Scanning electron microscopy (SEM) was used to examine the morphology of the agglomerated powders and the cross section of the alumina-titania-silica coatings. Exper-imental results show that the agglomerated nanocrystalline particles are spherical, with a size from (10 - 90)μm. The flow ability of the nanocrystalline powders is greatly improved after the reprocessing. The coatings deposited by the plasma spraying are mainly of nanostructure. Unlike conventional plasma-sprayed coatings, no laminar layer could be found in the nanostructured coatings. Although the nanostructured coatings have a lower microhardness than conventional microstructured coatings, the toughness of the nanostructured ceramic coatings is significantly improved.
文摘Five mixtures (M1 to M5) of silica-alumina geomaterials and two varieties of alumina (AP and AR) were used for the elaboration of mullite refractory materials between 1500℃ and 1600℃. An X-ray diffraction (XRD) analysis showed that the refractory samples are composed of mullite, corundum and silica. The length of the mullite crystals was measured by a method of image analysis of scanning electron microscopy (SEM). Chemical and mechanical properties of these materials were investigated and correlated with their microstructure. Resistance towards Acid Attack test showed that the refractory samples present good resistance, as well as, the alumina powder AR obtained from waste of silica-alumina bricks proves to be efficient for an eventual use.
文摘Alumina-silica composite coatings were prepared on the surface of graphite paper by CVD using AlCl3/SiCl4/H2/CO2 as precursor in the temperature range of 300 to 550℃. XRD and SEM were used to examine the phase composition and the microstructure of the coating, respectively. The results indicate that the dense, uniform and adherent alumina-silica composite coating can be prepared on graphite paper substrate by CVD at 550℃ using SiCl4/AlCl3/CO2/H2. The alumina-silica composite coating is composed of a number of spherical particles. Each particle is composed of a number of fine-particle. The phase of the 550℃ composite coating includes γ-alumina containing amorphous silica. The content of Cl element in composite coating decreases with the increase of the deposition temperature. The analysis results of morphology and growth mechanisms of the CVD alumina-silica indicate that the condensation within the boundary layer will be more likely to lead to the formation of gel-particles. The gel-particles size decreases with the increase of deposition temperature in the range of 300550℃. Surface reaction is the main path to generate deposition products at 550℃.
文摘研究了无有机胺醇水体系低硅铝比ZSM-5沸石的绿色合成方法。在无有机胺模板剂和不加晶种的醇水体系中,一步合成了形貌均一的小晶粒聚集体低硅铝比ZSM-5沸石,考察了合成体系中各配料的含量以及晶化温度对合成低硅铝比ZSM-5沸石的影响。利用XRD、FTIR、SEM、N_(2)吸附-脱附、^(27)Al MAS NMR和^(29)Si MAS NMR等方法对合成的ZSM-5沸石进行表征。实验结果表明,当n(Si)∶n(Al)=20,n(Na_(2)O)∶n(SiO_(2))=0.071,n(C_(2)H_(5)OH)∶n(SiO_(2))=1.77,晶化温度为160℃时,可合成具有高结晶度的纯相ZSM-5沸石。^(27)Al MAS NMR表征结果显示,合成的ZSM-5沸石主要含有骨架四配位铝,无非骨架铝。合成的ZSM-5沸石的比表面积和微孔孔体积分别为384 m^(2)/g和0.14 cm^(3)/g,总酸量达到789μmol/g,骨架n(Si)∶n(Al)=14.4。
文摘Increasing world request for energy has made oil extraction from reservoirs more desirable.Many novel EOR methods have been proposed and utilized for this purpose.Using nanocomposites in chemical flooding is one of these novel methods.In this study,we investigated the impact of six injection solutions on the recovery of light and heavy oil with the presence of two different brines as formation water using a homogenous glass micromodel.All of the injection solutions were based on a 40,000 ppm Na Cl synthetic seawater(SSW),one of which was additive free and the others were prepared by dispersing nanocomposite silica-based polyacrylamide(NCSP),nanocomposite alumina-based polyacrylamide(NCAP),the combination of both nanocomposites silica and alumina based on polyacrylamide(NCSAP),surfactant(CTAB)and polyacrylamide(PAM)with a concentration of 1000 ppm as additives.The Stability of nanocomposites was tested against the salinity of the brine and temperature using salinity and DSC tests which were successful.Alongside stability tests,IFT,contact angle and oil recovery measurements were made.Visual results revealed that in addition to the effect of silica and alumina nanocomposite in reducing interfacial tension and wettability alteration,control of mobility ratio caused a major improvement in sweeping efficiency and oil recovery.According to the sweeping behavior of injected fluids,it was found that the main effect of surfactant was wettability alteration,for polyacrylamide was mobility control and for nanocomposites was the reduction of interfacial tension between oil and injected fluid,which was completely analyzed and checked out.Also,NCSAP with 95.83%and 70.33%and CTAB with 84.35%and 91%have the highest light oil recoveries at 250,000 ppm and 180,000 ppm salinity,respectively which is related to the superposition effect of interactions between nanocomposites,solution and oil.Based on our results it can be concluded that the most effective mechanism in oil recovery was IFT reduction which was done by CTAB reduction also by using a polymer-based nanocomposite such as NCSAP and adding the mobility control factor,the oil recovery can be further enhanced.In the case of heavy oil recovery,it can be concluded that the mobility control played a much more effective role when the PAM performed almost similarly to the CTAB and other nanocomposites with a recovery factor of around 17%.In this study,we tried to investigate the effect of different injection solutions and their related mechanisms on oil recovery.