Mesoporous silica materials with pore diameters of 2–5 nm have been prepared using ascorbic add as a nonsurfactant template or pore-forming agent in HCl-catalyzed sol-gel reactions of tetraethylorthosilicate, followe...Mesoporous silica materials with pore diameters of 2–5 nm have been prepared using ascorbic add as a nonsurfactant template or pore-forming agent in HCl-catalyzed sol-gel reactions of tetraethylorthosilicate, followed by removing the ascorbic acid compound by extraction with ethanol. Characterization results from nitrogen sorption isotherm, powder X-ray diffraction and transmission electron microscopy indicate that me materials have large specific surface areas (e.g. 1000 m2/g) and pore volumes (e.g. 0.8 cm3/g). The mesoporosity is arisen from interconnecting disordered wormlike channels and pores with relatively broad size distributions. As the ascorbic acid concentration is increased, the pore diameters and pore volumes of the materials increase.展开更多
In this study,porous silica with high surface area was prepared through selective leaching of thermally activated chlorite in HCl solution.In the process,chlorite was activated by pre-calcining treatment,then activate...In this study,porous silica with high surface area was prepared through selective leaching of thermally activated chlorite in HCl solution.In the process,chlorite was activated by pre-calcining treatment,then activated components(MgO,Al_(2)O_(3),and Fe_(2)O_(3))were selectively leached by acid solution,resulting in the formation of nanopores in situ.The morphology,structure,surface area and pore-size distribution of the material were characterized by XRD,TG/DSC,^(27)Al MAS NMR,SEM,TEM and N2 adsorption−desorption isotherms.The highest specific surface area(SBET=333 m^(2)/g)was obtained by selectively leaching the 600℃ calcined chlorite from 3 mol/L HCl at 90℃ for 2 h.The pore sizes and specific surface areas can be controlled by calcination and leaching conditions.The ^(27)Al MAS NMR spectra of the samples revealed the relationship between structural transformation and the selective acid leaching properties of thermal-activated chlorite,demonstrating that AlVI transfers into AlV when chlorite changes into activated chlorite during thermal activation,and the coordinations of Al has a significant effect on acid solubility of chlorite.The as-prepared porous silica showed favorable adsorption abilities with capacity of 148.79 mg/g for methylene blue at pH of about 7 and temperature of 25℃,indicating its promising potential in adsorption application.展开更多
The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-dry...The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-drying (FD),low pressure drying (LPD),high temperature drying (HTD) and chemical modification & ambient drying (CMD) techniques.Observation under pore distribution and structural properties showed that CMD technique leads to homogenous mesoporous silica material with specific surface area of 745 m2/g,and the average pore size around 20 nm,while LPD and HTD result in loosely packed particles with non-isotropic aggregation pattern.The specific surface areas of LPD and HTD samples are 419 and 513 m2/g respectively,and the pore size distribution of the samples are observed distributing widely in range of 10-100 nm.Freeze drying method is a new but prospective way to prepare mesoporous silica.The specific area of FD sample is around 500 m2/g.By the comparison for the properties of the gels,this paper wants to induce a further interest in finding a proper method to synthesize the porous silica gels for low price use.展开更多
We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle pr...We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine.展开更多
Since China’s Reform and Opening-up,the innovation and development of refractories for ironmaking industry in Sinosteel Luonai were narrated,including silica materials,Al_(2)O_(3)-SiO_(2) refractories and non-oxide c...Since China’s Reform and Opening-up,the innovation and development of refractories for ironmaking industry in Sinosteel Luonai were narrated,including silica materials,Al_(2)O_(3)-SiO_(2) refractories and non-oxide composites;and the development direction of refractories for ironmaking industry was prospected.展开更多
A new catalytic-oxidation method was adopted to remove the templates from SBA-1 5 and MCM-4 1 me- soporous materials via Fenton-like techniques under microwave irradiation. The mesoporous silica materials were treated...A new catalytic-oxidation method was adopted to remove the templates from SBA-1 5 and MCM-4 1 me- soporous materials via Fenton-like techniques under microwave irradiation. The mesoporous silica materials were treated with different Fenton agents based on the template's property and textural property. The samples were cha- racterized by powder X-ray diffraction(XRD) measurement, N2 adsorption-desorption isotherms, infrared spectro- scopy, 29Si MAS NMR and thermo gravimetric analysis(TGA). The results reveal that this is an efficient and facile approach to the thorough template-removal from mesoporous silica materials, as well as to offering products with more stable structures, higher BET surface areas, larger pore volumes and larger quantity of silanol groups.展开更多
Hollow silica microspheres (HSMSs) have been successfully fabricated via a facile hydrothermal route using D-glucose as the sacrificial template and sodium silicate powder as the silica precursor. The resulting sili...Hollow silica microspheres (HSMSs) have been successfully fabricated via a facile hydrothermal route using D-glucose as the sacrificial template and sodium silicate powder as the silica precursor. The resulting silica hollow particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and infrared spectroscopy (IR). The surface area was determined using the BET method. SEM and TEM images exhibited micro-sized silica hollow particles with a size of -1.5μm.展开更多
The hybrid materials are widely used in various fields for excellent performance. However, there are few researches studying their failure process. In order to prepare the hybrid materials with better performance, the...The hybrid materials are widely used in various fields for excellent performance. However, there are few researches studying their failure process. In order to prepare the hybrid materials with better performance, the failure process needs to be well studied. Two kinds of silica/polyacrylate films are successfully prepared to study the effect of organic-inorganic interaction on performance. The average diameter of silica particles is measured to be around 342 nm by scanning electron microscope(SEM). Wear test demonstrates the hybrid film, which is obtained by grafting polyacrylate onto silica particles, possesses more excellent properties than the one filled directly with silica particles. The stronger interaction between organic and inorganic components leads to a better distribution of inorganic particles within the polymer matrix. In this work, a model is presented to illustrate the deterioration process of the hybrid films, which allows us to further understand the hybrid materials.展开更多
A sol-gel procedure in a water/oil emulsion was introduced for the synthesis of porous silica spheres. Tetraethoxysilane was used as the silica source. The specific surface area and total pore volume of the product re...A sol-gel procedure in a water/oil emulsion was introduced for the synthesis of porous silica spheres. Tetraethoxysilane was used as the silica source. The specific surface area and total pore volume of the product reached 772.3 m2/g and 0.663 cm3/g, respectively. The electrolyte washing process conferred a surface charge to the product, which displayed self-dispersal properties in water. The porous spheres have potential applications in the fields of drug delivery, controlled release capsules, indoor air pollutant scavengers, and hydrogen storage agents. The oil phase, which accounts for over 8O% of the chemical cost of the procedure, could largely be recycled by filtering, standing, and layering. The whole procedure is suitable for application as an industrial process.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 29874002)the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825004)
文摘Mesoporous silica materials with pore diameters of 2–5 nm have been prepared using ascorbic add as a nonsurfactant template or pore-forming agent in HCl-catalyzed sol-gel reactions of tetraethylorthosilicate, followed by removing the ascorbic acid compound by extraction with ethanol. Characterization results from nitrogen sorption isotherm, powder X-ray diffraction and transmission electron microscopy indicate that me materials have large specific surface areas (e.g. 1000 m2/g) and pore volumes (e.g. 0.8 cm3/g). The mesoporosity is arisen from interconnecting disordered wormlike channels and pores with relatively broad size distributions. As the ascorbic acid concentration is increased, the pore diameters and pore volumes of the materials increase.
基金Project(51772153)supported by the National Natural Science Foundation of China。
文摘In this study,porous silica with high surface area was prepared through selective leaching of thermally activated chlorite in HCl solution.In the process,chlorite was activated by pre-calcining treatment,then activated components(MgO,Al_(2)O_(3),and Fe_(2)O_(3))were selectively leached by acid solution,resulting in the formation of nanopores in situ.The morphology,structure,surface area and pore-size distribution of the material were characterized by XRD,TG/DSC,^(27)Al MAS NMR,SEM,TEM and N2 adsorption−desorption isotherms.The highest specific surface area(SBET=333 m^(2)/g)was obtained by selectively leaching the 600℃ calcined chlorite from 3 mol/L HCl at 90℃ for 2 h.The pore sizes and specific surface areas can be controlled by calcination and leaching conditions.The ^(27)Al MAS NMR spectra of the samples revealed the relationship between structural transformation and the selective acid leaching properties of thermal-activated chlorite,demonstrating that AlVI transfers into AlV when chlorite changes into activated chlorite during thermal activation,and the coordinations of Al has a significant effect on acid solubility of chlorite.The as-prepared porous silica showed favorable adsorption abilities with capacity of 148.79 mg/g for methylene blue at pH of about 7 and temperature of 25℃,indicating its promising potential in adsorption application.
基金Sponsored by the National Mega-Project of Scientific & Technical Supporting Programs,Ministry of Science &Technology of China (Grant No.2006BAJ04A04)the Science Foundation of Liaoning Province,China (Grant No. 2008S190)
文摘The effect of drying techniques on the microstructure,morphology and pore structure of porous silica gels was studied in the paper.The gels were prepared by using sol-gel process and different drying routes:freeze-drying (FD),low pressure drying (LPD),high temperature drying (HTD) and chemical modification & ambient drying (CMD) techniques.Observation under pore distribution and structural properties showed that CMD technique leads to homogenous mesoporous silica material with specific surface area of 745 m2/g,and the average pore size around 20 nm,while LPD and HTD result in loosely packed particles with non-isotropic aggregation pattern.The specific surface areas of LPD and HTD samples are 419 and 513 m2/g respectively,and the pore size distribution of the samples are observed distributing widely in range of 10-100 nm.Freeze drying method is a new but prospective way to prepare mesoporous silica.The specific area of FD sample is around 500 m2/g.By the comparison for the properties of the gels,this paper wants to induce a further interest in finding a proper method to synthesize the porous silica gels for low price use.
基金Funded by National Natural Science Foundation of China (Nos.51861135313,U1663225,U1662134,21711530705,21673282,21473246)Fundamental Research Funds for the Central Universities (Nos.19lgpy112,19lgzd16,2019IB005)+3 种基金National Key R&D Program of China (No.2017YFC1103800)Program for Changjiang Scholars and Innovative Research Team in University (No.IRT_15R52)International Science&Technology Cooperation Program of China (No.2015DFE52870)Jilin Province Science and Technology Development Plan (No.20180101208JC)
文摘We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine.
文摘Since China’s Reform and Opening-up,the innovation and development of refractories for ironmaking industry in Sinosteel Luonai were narrated,including silica materials,Al_(2)O_(3)-SiO_(2) refractories and non-oxide composites;and the development direction of refractories for ironmaking industry was prospected.
基金Supported by the National Basic Research Program of China(Nos.2011CB808703, 2012CB821700), the National Natural Science Foundation of China(Nos.91022030, 21261130584), the Programme of Introducing Talents of Discipline to Universities of China(No.B07016), the Award Project of King Abdullah University of Science Technology of Saudi Arabia (No.CRG-I-2012-LAI-009) and the Science and Technology Development Center Project of Ministry of Education of China(No.20120061130012).
文摘A new catalytic-oxidation method was adopted to remove the templates from SBA-1 5 and MCM-4 1 me- soporous materials via Fenton-like techniques under microwave irradiation. The mesoporous silica materials were treated with different Fenton agents based on the template's property and textural property. The samples were cha- racterized by powder X-ray diffraction(XRD) measurement, N2 adsorption-desorption isotherms, infrared spectro- scopy, 29Si MAS NMR and thermo gravimetric analysis(TGA). The results reveal that this is an efficient and facile approach to the thorough template-removal from mesoporous silica materials, as well as to offering products with more stable structures, higher BET surface areas, larger pore volumes and larger quantity of silanol groups.
基金the National Research Center of Egypt for the partial support of this work
文摘Hollow silica microspheres (HSMSs) have been successfully fabricated via a facile hydrothermal route using D-glucose as the sacrificial template and sodium silicate powder as the silica precursor. The resulting silica hollow particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and infrared spectroscopy (IR). The surface area was determined using the BET method. SEM and TEM images exhibited micro-sized silica hollow particles with a size of -1.5μm.
基金Supported by the Southwest Petroleum University Outstanding Researcher Grant(201331010015)
文摘The hybrid materials are widely used in various fields for excellent performance. However, there are few researches studying their failure process. In order to prepare the hybrid materials with better performance, the failure process needs to be well studied. Two kinds of silica/polyacrylate films are successfully prepared to study the effect of organic-inorganic interaction on performance. The average diameter of silica particles is measured to be around 342 nm by scanning electron microscope(SEM). Wear test demonstrates the hybrid film, which is obtained by grafting polyacrylate onto silica particles, possesses more excellent properties than the one filled directly with silica particles. The stronger interaction between organic and inorganic components leads to a better distribution of inorganic particles within the polymer matrix. In this work, a model is presented to illustrate the deterioration process of the hybrid films, which allows us to further understand the hybrid materials.
基金supported by the Key Project of the National Eleventh Five-Year Research Program of China(2008BAE66B00)by the Scientific and Technological Planning Project of JilinProvince(200,75,009)
文摘A sol-gel procedure in a water/oil emulsion was introduced for the synthesis of porous silica spheres. Tetraethoxysilane was used as the silica source. The specific surface area and total pore volume of the product reached 772.3 m2/g and 0.663 cm3/g, respectively. The electrolyte washing process conferred a surface charge to the product, which displayed self-dispersal properties in water. The porous spheres have potential applications in the fields of drug delivery, controlled release capsules, indoor air pollutant scavengers, and hydrogen storage agents. The oil phase, which accounts for over 8O% of the chemical cost of the procedure, could largely be recycled by filtering, standing, and layering. The whole procedure is suitable for application as an industrial process.