期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Silica-modified Pt/TiO_(2) catalysts with tunable suppression of strong metal-support interaction for cinnamaldehyde hydrogenation
1
作者 Zhengjian Hou Yuanyuan Zhu +6 位作者 Hua Chi Li Zhao Huijie Wei Yanyan Xi Lishuang Ma Xiang Feng Xufeng Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期189-198,共10页
Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob... Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed. 展开更多
关键词 Pt catalyst silica modification HYDROGENATION CINNAMALDEHYDE Strong metal-support interaction
下载PDF
Comparative Study on Optical Properties and Scratch Resistance of Nanocomposite Coatings Incorporated with Flame Spray Pyrolyzed Silica Modified via in-situ Route and ex-situ Route 被引量:4
2
作者 Yun Wang Ling Zhang +1 位作者 Yanjie Hu Chunzhong Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第3期251-258,共8页
A new type of transparent scratch resistant coatings including in-situ modified SiO2 (g-SiO2) in flame spray pyrolysis (FSP) process was prepared. The maximum content of g-SiO2 in the coating was 15 wt%, which is ... A new type of transparent scratch resistant coatings including in-situ modified SiO2 (g-SiO2) in flame spray pyrolysis (FSP) process was prepared. The maximum content of g-SiO2 in the coating was 15 wt%, which is higher than that of SiO2 modified by traditional wet chemical route (I-SiO2, only 10 wt%). The results of transmission electron microscopy have demonstrated that in-situ surface modified g-SiO2 particles dispersed well with smaller agglomerates in the final coating, which was much better than the particles modified via wet chemical route. Visible light transmittance and haze tests were introduced to characterize the optical quality of the films. All coatings were highly transparent with the visible light transmittance of above 80%, especially for coatings containing g-SiO2, which exhibited slightly higher visible light transmittance than l-SiO2 embedded one. The haze value of coatings incorporated with 15 wt% g-SiO2 was 1.85%, even lower than the coating with 5 wt% I-SiO2 (haze value of 2.09%), indicating much better clarity of g-SiO2. The excellent optical property of g-SiO2 filled coatings was attributed to the good dispersion and distribution of particles. Nano-indention and nano-scratch tests were con- ducted to investigate the scratch resistance of coatings on nano-scale. The surface hardness of the coatings rose by 18% and 14%, and the average friction coefficient decreased by 15% and 11%, respectively, compared to the neat coat due to the addition of 10 wt% g-SiO2 and I-SiO2. The pencil hardness of the coating with 15 wt% g-SiO2 increased from 2B for the neat coating to 2H. However, the pencil hardness of coating with 10 wt% I-SiO2 was only H. The results showed that the g-SiO2 embedded coatings exhibited higher scratch resistance and better optical properties. 展开更多
关键词 ln-situ modification silica Coating Scratch resistance Optical property
原文传递
TiO_2-modified nano-egg-shell Pd catalyst for selective hydrogenation of acetylene 被引量:3
3
作者 Jin Gao Qiufeng Zhu Lixiong Wen 《Particuology》 SCIE EI CAS CSCD 2010年第3期251-256,共6页
Pd-based egg-shell nano-catalysts were prepared using porous hollow silica nanoparticles (PHSNs) as support, and the as-prepared catalysts were modified with TiO2 to promote their selectivity for hydro-genation of a... Pd-based egg-shell nano-catalysts were prepared using porous hollow silica nanoparticles (PHSNs) as support, and the as-prepared catalysts were modified with TiO2 to promote their selectivity for hydro-genation of acetylene. Pd nanoparticles were loaded evenly on PHSNs and TiO2 was loaded on the active Pd particles. The effects of reduction time and temperature and the amount of TiO2 added on catalytic per-formances were investigated by using a fixed-bed micro-reactor. It was found that the catalysts showed better performance when reduced at 300 ℃ than at 500℃, and if reduced for 1 h than 3 h. When the amount of Ti added was 6 times that of Pd, the catalyst showed the highest ethylene selectivity. 展开更多
关键词 Egg-shell nano-catalyst Porous hollow silica nanoparticles modification Selective hydrogenation Acetylene
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部