Interface properties of nano-silica/thermotropic liquid crystalline polyesters (TLCP) composites were investigated by X-ray diffraction analysis and differential scanning calorimetory. The crystallinity of TLCP in the...Interface properties of nano-silica/thermotropic liquid crystalline polyesters (TLCP) composites were investigated by X-ray diffraction analysis and differential scanning calorimetory. The crystallinity of TLCP in the composites drastically decreased with an increase of nano-silica content, depending on the surface area of the silica particles. Little size effects (40 - 400 nm) in the particles and strong interaction between silica surface and the C=O moieties of TLCP were observed by IR analysis. The glass transition temperature of TLCP (。C higher than that in bulk.展开更多
Microstructural evolution and strengthening mechanisms of Mg-3Sn-1Ca based alloys with additions of different amounts of Al N nanoparticles were investigated.It was found that with increasing the amount of AlN nano-pa...Microstructural evolution and strengthening mechanisms of Mg-3Sn-1Ca based alloys with additions of different amounts of Al N nanoparticles were investigated.It was found that with increasing the amount of AlN nano-particles the grain size decreases obviously.The existence of AlN nano-particles could refine the primary crystal phases CaMgSn,which provided more heterogeneous nucleation sites for the formation of magnesium.Moreover,such nano-particles could also restrict the grain growth during solidification.After adding AlN nano-particles,both the tensile properties at room temperature and high temperature 250℃and the hardness are largely improved.The improvement of strength is attributed to grain refinement and second phase refinement.展开更多
Colorectal cancer(CRC)is the third most common cancer worldwide and the second most common cause of cancer death.Nanotherapies are able to selectively target the delivery of cancer therapeutics,thus improving overall ...Colorectal cancer(CRC)is the third most common cancer worldwide and the second most common cause of cancer death.Nanotherapies are able to selectively target the delivery of cancer therapeutics,thus improving overall antitumor eff-iciency and reducing conventional chemotherapy side effects.Mesoporous silica nanoparticles(MSNs)have attracted the attention of many researchers due to their remarkable advantages and biosafety.We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.展开更多
Discoveries of many coal seams at depths by drilling carried by Geological Survey of Pakistan in Sor Range and Harnai Gochina, extended the coal seams at depth which is challenge for mine owners to exploit feasibly. B...Discoveries of many coal seams at depths by drilling carried by Geological Survey of Pakistan in Sor Range and Harnai Gochina, extended the coal seams at depth which is challenge for mine owners to exploit feasibly. Bed to bed gypsum samplings (and their chemical analyses) of huge gypsum deposits from Sulaiman foldbelt is a base for industrialist and also planers to develop cement and gypsum industries to increase export and foreign exchange for the development of area and Pakistan. Low and high grade sedimentary iron deposits, silica sand and uranium host rocks and their extensions in Sulaiman and Kirthar foldbelts are presented. Anomalies of a few base metals arise as a result of geochemical exploration carried at part of Loralai District of Balochistan. Theropod dinosaurs were frequent in India, while Poripuchian titanosaurs (Sauropoda, Dinosauria) were frequent in Pakistan. Besides some ichnotaxa, many bone taxa such as 1 titanosauriform, 14 titanosaurian sauropod (including one new titanosaur), and 3 theropod dinosaurs are established from Pakistan. Among these 12 titanosaur species and 3 theropod species are named in about 10 km<sup>2</sup> area of Vitakri dome and 2 titanosaur species are named in about a few hundred square meter area of Mari Bohri (Kachi Bohri) which is about 10 km westward from Vitakri dome. Pakistan is a unique country which discoverd 14 diversified titanosaurs in a short area and also in a short period (67 - 66 million years ago/Ma). About 400 bones found from a few meter thick upper part of upper shale horizon of latest Maastrichtian Vitakri Formation which is base for titanosaur taxa. Cranial material is in low fraction (but include significant diverse snouts), caudal vertebrae are prominent, the cervicals, dorsals and sacrals have significant numbers, forelimb and hind limb bones have balanced fraction. Humeri, femora and tibiae are most common. To know the position of Pakistani titanosaurs among titanosaurs and sauropods, there is a need to extend list of characters for phylogenetic analyses. This broad feature list should include main characters of titanosaurs from Pakistan and also from global world.展开更多
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos...Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.展开更多
Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proporti...Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.展开更多
ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles w...ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect.展开更多
A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the resi...A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.展开更多
It was found that silica fume can reduce the maximum hydration heat release rate of cement by microcalorimetry,inhibit CAH_(10),promote the generation of C_(3)AH_(6)and strätlingite C_(2)ASH_(8),or promote the co...It was found that silica fume can reduce the maximum hydration heat release rate of cement by microcalorimetry,inhibit CAH_(10),promote the generation of C_(3)AH_(6)and strätlingite C_(2)ASH_(8),or promote the conversion of CAH_(10)to C_(3)AH_(6).Sodium tripolyphosphate can retard the early hydration of cement,have a slight effect on 1 d hydration products of cement and inhibit the generation hydration products.Sodium tripolyphosphate and silica fume can promote the early hydration of cement,advance the formation of C_(2)ASH_(8)or the conversion from CAH_(10)to C_(3)AH_(6)at 1 d.展开更多
Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob...Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.展开更多
To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using s...To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.展开更多
The liquid phase Beckmann rearrangement of cyclohexanone oxime (CHO) using fuming sulfuric acid as a catalyst is a traditional method for preparing ε-caprolactam (CPL). This process has drawbacks, such as environment...The liquid phase Beckmann rearrangement of cyclohexanone oxime (CHO) using fuming sulfuric acid as a catalyst is a traditional method for preparing ε-caprolactam (CPL). This process has drawbacks, such as environmental pollution, corrosion of equipment, and low added value of by-product ammonium sulfate. This article designed and prepared a green silica gel-supported trifluoromethanesulfonic acid catalyst for the liquid-phase Beckmann rearrangement of CHO to prepare (CPL). The influencing factors of catalyst preparation and the optimal reaction conditions for Beckmann rearrangement were investigated. It was found that the optimal conditions for catalyst preparation were as follows: raw material silica gel:trifluoromethanesulfonic acid = 1:0.2 (mass ratio), room temperature, stirring time of 2.5 hours, and solvent of acetonitrile, silica gel mesh size is 100 - 200. The optimal reaction conditions for Beckmann rearrangement are CHO: catalyst = 1:2 (mass ratio), temperature of 130˚C, solvent of benzonitrile, volume of 30 mL/g CHO, and reaction time of 4 hours. Under the above conditions, the conversion of CHO is 90%, and the selectivity of CPL is 90%.展开更多
Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introdu...Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introduce a nondestructive technique to achieve Si-O bond rearrangement,leading to plastic deformation and photoluminescence enhancement of amorphous silica nanoparticles using supercritical carbon dioxides in EtOH/H_(2)O solution under mild temperature.Specifically,plastic deformation is achieved by treating hollow mesoporous silica nanospheres using supercritical CO_(2)at 40°C under 20 MPa.Experimental and theoretical studies revealed the critical role of supercritical CO_(2)in the plastic deformation process,which can be intercalated into the hollow mesoporous silica nanospheres with anisotropic stresses and induces the rearrangement of Si-O bonds and transformation of ring structures.This work suggests a novel approach to engineer high-performance nano-silica glass components for numerous optical and photonic devices under mild condition.展开更多
Solid waste recycling is an economically sound strategy for preserving the environment,safeguarding natural resources,and diminishing the reliance on raw material consumption.Geopolymer technology offers a significant...Solid waste recycling is an economically sound strategy for preserving the environment,safeguarding natural resources,and diminishing the reliance on raw material consumption.Geopolymer technology offers a significant advantage by enabling the reuse and recycling of diverse materials.This research assesses how including silica fume and glass powder enhances the impact resistance of ultra-high-performance geopolymer concrete(UHPGC).In total,18 distinct mixtures were formulated by substituting ground granulated blast furnace slag with varying proportions of silica fume and glass powder,ranging from 10%to 40%.Similarly,for each of the mixtures above,steel fibre was added at a dosage of 1.5%to address the inherent brittleness of UHPGC.The mixtures were activated by combining sodium hydroxide and sodium silicate solution to generate geopolymer binders.The specimens were subjected to drop-weight impact testing,wherein an examination was carried out to evaluate various parameters,including flowability,density at fresh and hardened state,compressive strength,impact numbers indicative of cracking and failure occurrences,ductility index,and analysis of failure modes.Additionally,the variations in the impact test outcomes were analyzed using the Weibull distribution,and the findings corresponding to survival probability were offered.Furthermore,the microstructure of UHPGC was scrutinized through scanning electron microscopy.Findings reveal that the specimens incorporating glass powder exhibited lower cracking impact number values than those utilizing silica fume,with reductions ranging from 18.63%to 34.31%.Similarly,failure impact number values decreased from 8.26%to 28.46%across glass powder contents.The maximum compressive and impact strength was recorded in UHPGC,comprising 10%silica fume with fibres.展开更多
Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, ma...Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae.展开更多
This work studied the thickening progression mechanism of the silica fume-oil well cement composite system at high temperatures(110-180.C)in order to provide a theoretical guidance for the rational application of sili...This work studied the thickening progression mechanism of the silica fume-oil well cement composite system at high temperatures(110-180.C)in order to provide a theoretical guidance for the rational application of silica fume in the cementing engineering.Results showed that silica fume seldom affected the thickening progression of oil well cement slurry at 110-120.C,but when temperature reached above130.C,it would aggravate the bulging degree of thickening curves and significantly extend the thickening time,meanwhile causing the abnormal“temperature-based thickening time reversal”and“dosage-based thickening time reversal”phenomena in the range of 130-160.C and 170-180.C respectively.At 130-160.C,the thickening time of oil well cement slurry was mainly associated with the generation rate of calcium hydroxide(CH)crystal.The introduced silica fume would be attracted to the cement minerals'surface that were hydrating to produce CH and agglomerate together to form an“adsorptive barrier”to hinder further hydration of the inner cement minerals.This“adsorptive barrier”effect strengthened with the rising temperature which extended the thickening time and caused the occurrence of the“temperature-based thickening time reversal”phenomenon.At 170-180.C,the pozzolanic activity of silica fume significantly enhanced and considerable amount of C-S-H was generated,thus the“temperature-based thickening time reversal”vanished and the“dosage-based thickening time reversal”was presented.展开更多
The bioeffects of silica nanoparticles (SiNP), phosphorylate-terminated nanoparticles (PO4- NP) and amino-terminated nanoparticles (NH2NP) on HaCaT cell line have been studied in this paper. The effects of the three k...The bioeffects of silica nanoparticles (SiNP), phosphorylate-terminated nanoparticles (PO4- NP) and amino-terminated nanoparticles (NH2NP) on HaCaT cell line have been studied in this paper. The effects of the three kinds of functionalized silica nanoparticles on adherence, proliferation and cycle of HaCaT cells have been investigated. And the cel- lular uptake of the three kinds of functionalized silica nanoparticles by HaCaT cells has also been exam- ined. Results indicated that the bioeffects of the three kinds of functionalized nanoparticles on HaCaT cells were concentration-dependent. And the three kinds of functionalized nanoparticles all exhibited well bio- compatibility if the concentration was below 0.2 μg/μL. While the cytotoxicities of the three kinds of function- alized nanoparticles on HaCaT cells would increase with the increasing of nanoparticles concentration, and the following order was observed: NH2NP > SiNP > PO4NP. In addition, the quantity and rapidity of cellular uptake of nanoparticles by HaCaT cells were diverse due to the different functional groups. Under the same conditions, NH2NP was most and fast internalized by HaCaT cells, followed by SiNP, and PO4NP was the least and slowest. These results provided theoretical foundation for the safe applica- tion and further modification of silica nanoparticles, which could broaden the application of silica nano- particles in biomedicine.展开更多
Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially acces...Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially accessible internal spaces,and so forth.Dissimilar guest species(such as organic groups or metal nanoparticles)could be readily decorated onto the interfaces of the channels and pores,realizing the functionalization of dendritic mesoporous silica nanoparticles for targeted applications.As adsorbents and catalysts,dendritic mesoporous silica nanoparticles-based materials have experienced nonignorable development in CO_(2)capture and catalytic conversion.This comprehensive review provides a critical survey on this pregnant subject,summarizing the designed construction of novel dendritic mesoporous silica nanoparticles-based materials,the involved chemical reactions(such as CO_(2)methanation,dry reforming of CH_(4)),the value-added chemicals from CO_(2)(such as cyclic carbonates,2-oxazolidinones,quinazoline-2,4(1H,3H)-diones),and so on.The adsorptive and catalytic performances have been compared with traditional silica mesoporous materials(such as SBA-15 or MCM-41),and the corresponding reaction mechanisms have been thoroughly revealed.It is sincerely expected that the in-depth discussion could give materials scientists certain inspiration to design brand-new dendritic mesoporous silica nanoparticles-based materials with superior capabilities towards CO_(2)capture,utilization,and storage.展开更多
This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical propertie...This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.展开更多
Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its appli...Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.展开更多
文摘Interface properties of nano-silica/thermotropic liquid crystalline polyesters (TLCP) composites were investigated by X-ray diffraction analysis and differential scanning calorimetory. The crystallinity of TLCP in the composites drastically decreased with an increase of nano-silica content, depending on the surface area of the silica particles. Little size effects (40 - 400 nm) in the particles and strong interaction between silica surface and the C=O moieties of TLCP were observed by IR analysis. The glass transition temperature of TLCP (。C higher than that in bulk.
基金financially supported by the Study Abroad Program by the Government of Shandong Province(201802005)Linyi Industrial Technology Research Institute and Shandong Yinguang Yuyuan Light Metal Precise Forming Co.,Ltd。
文摘Microstructural evolution and strengthening mechanisms of Mg-3Sn-1Ca based alloys with additions of different amounts of Al N nanoparticles were investigated.It was found that with increasing the amount of AlN nano-particles the grain size decreases obviously.The existence of AlN nano-particles could refine the primary crystal phases CaMgSn,which provided more heterogeneous nucleation sites for the formation of magnesium.Moreover,such nano-particles could also restrict the grain growth during solidification.After adding AlN nano-particles,both the tensile properties at room temperature and high temperature 250℃and the hardness are largely improved.The improvement of strength is attributed to grain refinement and second phase refinement.
基金Supported by The Natural Science Foundation of Liaoning Province,No.2022-MS-435Shenyang Science and Technology Plan Project,No.22-321-33-79.
文摘Colorectal cancer(CRC)is the third most common cancer worldwide and the second most common cause of cancer death.Nanotherapies are able to selectively target the delivery of cancer therapeutics,thus improving overall antitumor eff-iciency and reducing conventional chemotherapy side effects.Mesoporous silica nanoparticles(MSNs)have attracted the attention of many researchers due to their remarkable advantages and biosafety.We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.
文摘Discoveries of many coal seams at depths by drilling carried by Geological Survey of Pakistan in Sor Range and Harnai Gochina, extended the coal seams at depth which is challenge for mine owners to exploit feasibly. Bed to bed gypsum samplings (and their chemical analyses) of huge gypsum deposits from Sulaiman foldbelt is a base for industrialist and also planers to develop cement and gypsum industries to increase export and foreign exchange for the development of area and Pakistan. Low and high grade sedimentary iron deposits, silica sand and uranium host rocks and their extensions in Sulaiman and Kirthar foldbelts are presented. Anomalies of a few base metals arise as a result of geochemical exploration carried at part of Loralai District of Balochistan. Theropod dinosaurs were frequent in India, while Poripuchian titanosaurs (Sauropoda, Dinosauria) were frequent in Pakistan. Besides some ichnotaxa, many bone taxa such as 1 titanosauriform, 14 titanosaurian sauropod (including one new titanosaur), and 3 theropod dinosaurs are established from Pakistan. Among these 12 titanosaur species and 3 theropod species are named in about 10 km<sup>2</sup> area of Vitakri dome and 2 titanosaur species are named in about a few hundred square meter area of Mari Bohri (Kachi Bohri) which is about 10 km westward from Vitakri dome. Pakistan is a unique country which discoverd 14 diversified titanosaurs in a short area and also in a short period (67 - 66 million years ago/Ma). About 400 bones found from a few meter thick upper part of upper shale horizon of latest Maastrichtian Vitakri Formation which is base for titanosaur taxa. Cranial material is in low fraction (but include significant diverse snouts), caudal vertebrae are prominent, the cervicals, dorsals and sacrals have significant numbers, forelimb and hind limb bones have balanced fraction. Humeri, femora and tibiae are most common. To know the position of Pakistani titanosaurs among titanosaurs and sauropods, there is a need to extend list of characters for phylogenetic analyses. This broad feature list should include main characters of titanosaurs from Pakistan and also from global world.
基金Funded by the National Natural Science Foundation of China(No.51678254)。
文摘Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions.
基金The authors acknowledge the financial supports from the National Science Foundation of China(U1908204,91845201,and 22002093)the funds that Central Government Guides Local Science and Technology Development(2022JH6/100100052)Scientific Research Project of Education Department of Liaoning Province(LQN202006).
文摘Yolk-shell SiO2 particles(YP)with center-radial meso-channels were fabricated through a simple and effective method.Al-containing YP-supported NiMo catalysts with different Al amounts(NiMo/AYP-x,x=Si/Al molar proportion)were prepared and dibenzothiophene(DBT)and 4,6-dimethyl-dibenzothiophene(4,6-DMDBT)were employed as the probes to evaluate the hydrodesulfurization(HDS)catalytic performance.The as-prepared AYP-x carriers and corresponding catalysts were characterized by some advanced characterizations to obtain deeper correlations between physicochemical properties and the HDS performance.The average pore sizes of series AYP-x supports are above 6.0 nm,which favors the mass transfer of organic sulfides.The cavity between the yolk and the shell is beneficial for the enrichment of S-containing compounds and the accessibility between reactants and active metals.Aluminum embedded into the silica framework could facilitate the formation of Lewis(L)and Brønsted(B)acid sites and adjust the metal-support interaction(MSI).Among all the as-synthesized catalysts,NiMo/AYP-20 catalyst shows the highest HDS activities.The improved HDS activity of NiMo/AYP-20 catalyst is attributed to the perfect combination of excellent structural properties of the yolk-shell mesoporous silica,enhanced acidity,moderate MSI,and good accessibility/dispersion of active components.
基金supported by the National Natural Science Foundation of China(22078076)Guangxi Natural Science Foundation(2020GXNSFAA159174)the Opening Project of National Enterprise Technology Center of Guangxi Bossco Environmental Protection Technology Co.,Ltd(GXU-BFY-2020-005).
文摘ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275235).
文摘A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.
基金Funded by the National Natural Science Foundation of China(No.51802235)Hubei Science and Technology Innovation Talent Project,China(No.2023DJC087)。
文摘It was found that silica fume can reduce the maximum hydration heat release rate of cement by microcalorimetry,inhibit CAH_(10),promote the generation of C_(3)AH_(6)and strätlingite C_(2)ASH_(8),or promote the conversion of CAH_(10)to C_(3)AH_(6).Sodium tripolyphosphate can retard the early hydration of cement,have a slight effect on 1 d hydration products of cement and inhibit the generation hydration products.Sodium tripolyphosphate and silica fume can promote the early hydration of cement,advance the formation of C_(2)ASH_(8)or the conversion from CAH_(10)to C_(3)AH_(6)at 1 d.
基金the National Natural Science Foundation of China(21576291,22003076)National Natural Science Foundation of China-Outstanding Youth foundation(22322814)the Fundamental Research Funds for the Central Universities(23CX03007A,22CX06012A)are gratefully acknowledge。
文摘Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed.
基金financial support from the National Natural Science Foundation of China(No.52074364)。
文摘To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.
文摘The liquid phase Beckmann rearrangement of cyclohexanone oxime (CHO) using fuming sulfuric acid as a catalyst is a traditional method for preparing ε-caprolactam (CPL). This process has drawbacks, such as environmental pollution, corrosion of equipment, and low added value of by-product ammonium sulfate. This article designed and prepared a green silica gel-supported trifluoromethanesulfonic acid catalyst for the liquid-phase Beckmann rearrangement of CHO to prepare (CPL). The influencing factors of catalyst preparation and the optimal reaction conditions for Beckmann rearrangement were investigated. It was found that the optimal conditions for catalyst preparation were as follows: raw material silica gel:trifluoromethanesulfonic acid = 1:0.2 (mass ratio), room temperature, stirring time of 2.5 hours, and solvent of acetonitrile, silica gel mesh size is 100 - 200. The optimal reaction conditions for Beckmann rearrangement are CHO: catalyst = 1:2 (mass ratio), temperature of 130˚C, solvent of benzonitrile, volume of 30 mL/g CHO, and reaction time of 4 hours. Under the above conditions, the conversion of CHO is 90%, and the selectivity of CPL is 90%.
基金the National Natural Science Foundation of China(Nos.51173170,21703207,21773216)the joint project from the Henan-Provincial and the China-National Natural Science Foundations(Project No.U2004208)
文摘Modulation of Si-O bonds under mild conditions has been a challenging issue in the field of material science,which is critical to manufacture highperformance silica-based optical and photonic devices.Herein,we introduce a nondestructive technique to achieve Si-O bond rearrangement,leading to plastic deformation and photoluminescence enhancement of amorphous silica nanoparticles using supercritical carbon dioxides in EtOH/H_(2)O solution under mild temperature.Specifically,plastic deformation is achieved by treating hollow mesoporous silica nanospheres using supercritical CO_(2)at 40°C under 20 MPa.Experimental and theoretical studies revealed the critical role of supercritical CO_(2)in the plastic deformation process,which can be intercalated into the hollow mesoporous silica nanospheres with anisotropic stresses and induces the rearrangement of Si-O bonds and transformation of ring structures.This work suggests a novel approach to engineer high-performance nano-silica glass components for numerous optical and photonic devices under mild condition.
基金SASTRA Deemed University,India for its generous research support。
文摘Solid waste recycling is an economically sound strategy for preserving the environment,safeguarding natural resources,and diminishing the reliance on raw material consumption.Geopolymer technology offers a significant advantage by enabling the reuse and recycling of diverse materials.This research assesses how including silica fume and glass powder enhances the impact resistance of ultra-high-performance geopolymer concrete(UHPGC).In total,18 distinct mixtures were formulated by substituting ground granulated blast furnace slag with varying proportions of silica fume and glass powder,ranging from 10%to 40%.Similarly,for each of the mixtures above,steel fibre was added at a dosage of 1.5%to address the inherent brittleness of UHPGC.The mixtures were activated by combining sodium hydroxide and sodium silicate solution to generate geopolymer binders.The specimens were subjected to drop-weight impact testing,wherein an examination was carried out to evaluate various parameters,including flowability,density at fresh and hardened state,compressive strength,impact numbers indicative of cracking and failure occurrences,ductility index,and analysis of failure modes.Additionally,the variations in the impact test outcomes were analyzed using the Weibull distribution,and the findings corresponding to survival probability were offered.Furthermore,the microstructure of UHPGC was scrutinized through scanning electron microscopy.Findings reveal that the specimens incorporating glass powder exhibited lower cracking impact number values than those utilizing silica fume,with reductions ranging from 18.63%to 34.31%.Similarly,failure impact number values decreased from 8.26%to 28.46%across glass powder contents.The maximum compressive and impact strength was recorded in UHPGC,comprising 10%silica fume with fibres.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51764046 and 52160013)the Inner Mongolia Autonomous Region Postgraduate Research Innovation Project of China (Grant No. S20231165Z)the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region of China (Grant Nos. 2023RCTD016 and 2024RCTD008)。
文摘Aerogel nanoporous materials possess high porosity, high specific surface area, and extremely low density due to their unique nanoscale network structure. Moreover, their effective thermal conductivity is very low, making them a new type of lightweight and highly efficient nanoscale super-insulating material. However, prediction of their effective thermal conductivity is challenging due to their uneven pore size distribution. To investigate the internal heat transfer mechanism of aerogel nanoporous materials, this study constructed a cross-aligned and cubic pore model(CACPM) based on the actual pore arrangement of SiO_(2) aerogel. Based on the established CACPM, the effective thermal conductivity expression for the aerogel was derived by simultaneously considering gas-phase heat conduction, solid-phase heat conduction, and radiative heat transfer. The derived expression was then compared with available experimental data and the Wei structure model. The results indicate that, according to the model established in this study for the derived thermal conductivity formula of silica aerogel, for powdery silica aerogel under the conditions of T = 298 K, a_(2)= 0.85, D_(1)= 90 μm, ρ = 128 kg/m^(3), within the pressure range of 0–10^(5)Pa, the average deviation between the calculated values and experimental values is 10.51%. In the pressure range of 10^(3)–10^(4)Pa, the deviation between calculated values and experimental values is within 4%. Under these conditions, the model has certain reference value in engineering verification. This study also makes a certain contribution to the research of aerogel thermal conductivity heat transfer models and calculation formulae.
基金supported by the Basic Research and Strategic Reserve Technology Research Fund Project of China National Petroleum Corporation (Grant No.2021DQ03-14)the National Natu ral Science Foundation of China (Grant No.52204010)Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘This work studied the thickening progression mechanism of the silica fume-oil well cement composite system at high temperatures(110-180.C)in order to provide a theoretical guidance for the rational application of silica fume in the cementing engineering.Results showed that silica fume seldom affected the thickening progression of oil well cement slurry at 110-120.C,but when temperature reached above130.C,it would aggravate the bulging degree of thickening curves and significantly extend the thickening time,meanwhile causing the abnormal“temperature-based thickening time reversal”and“dosage-based thickening time reversal”phenomena in the range of 130-160.C and 170-180.C respectively.At 130-160.C,the thickening time of oil well cement slurry was mainly associated with the generation rate of calcium hydroxide(CH)crystal.The introduced silica fume would be attracted to the cement minerals'surface that were hydrating to produce CH and agglomerate together to form an“adsorptive barrier”to hinder further hydration of the inner cement minerals.This“adsorptive barrier”effect strengthened with the rising temperature which extended the thickening time and caused the occurrence of the“temperature-based thickening time reversal”phenomenon.At 170-180.C,the pozzolanic activity of silica fume significantly enhanced and considerable amount of C-S-H was generated,thus the“temperature-based thickening time reversal”vanished and the“dosage-based thickening time reversal”was presented.
基金This work was supported by the Key Project of Natural Science Foundation of China (Grant No. 20135010)National Key Basic Research Program (Grant No. 2002CB513100-10)+2 种基金Key Technologies Research and Development Program (Grant No. 2003 BA310A16)High-Tech Research and Development (863) Program (Grant No. 2003AA302250) the National Natural Science Foundation of China (Grant No. 20405005).
文摘The bioeffects of silica nanoparticles (SiNP), phosphorylate-terminated nanoparticles (PO4- NP) and amino-terminated nanoparticles (NH2NP) on HaCaT cell line have been studied in this paper. The effects of the three kinds of functionalized silica nanoparticles on adherence, proliferation and cycle of HaCaT cells have been investigated. And the cel- lular uptake of the three kinds of functionalized silica nanoparticles by HaCaT cells has also been exam- ined. Results indicated that the bioeffects of the three kinds of functionalized nanoparticles on HaCaT cells were concentration-dependent. And the three kinds of functionalized nanoparticles all exhibited well bio- compatibility if the concentration was below 0.2 μg/μL. While the cytotoxicities of the three kinds of function- alized nanoparticles on HaCaT cells would increase with the increasing of nanoparticles concentration, and the following order was observed: NH2NP > SiNP > PO4NP. In addition, the quantity and rapidity of cellular uptake of nanoparticles by HaCaT cells were diverse due to the different functional groups. Under the same conditions, NH2NP was most and fast internalized by HaCaT cells, followed by SiNP, and PO4NP was the least and slowest. These results provided theoretical foundation for the safe applica- tion and further modification of silica nanoparticles, which could broaden the application of silica nano- particles in biomedicine.
基金supported by the National Key R&D program of China(2019YFA0706802)National Natural Science Foundation of China(52063029)+2 种基金Natural Science Basic Research Program of Shaanxi(2022JM-200,2021JQ-716)China Postdoctoral Science Foundation(2020M672269)Doctoral Research Program of Yan’an University(YDBK2019-02)
文摘Dendritic mesoporous silica nanoparticles own three-dimensional center-radial channels and hierarchical pores,which endows themselves with super-high specific surface area,extremely large pore volumes,especially accessible internal spaces,and so forth.Dissimilar guest species(such as organic groups or metal nanoparticles)could be readily decorated onto the interfaces of the channels and pores,realizing the functionalization of dendritic mesoporous silica nanoparticles for targeted applications.As adsorbents and catalysts,dendritic mesoporous silica nanoparticles-based materials have experienced nonignorable development in CO_(2)capture and catalytic conversion.This comprehensive review provides a critical survey on this pregnant subject,summarizing the designed construction of novel dendritic mesoporous silica nanoparticles-based materials,the involved chemical reactions(such as CO_(2)methanation,dry reforming of CH_(4)),the value-added chemicals from CO_(2)(such as cyclic carbonates,2-oxazolidinones,quinazoline-2,4(1H,3H)-diones),and so on.The adsorptive and catalytic performances have been compared with traditional silica mesoporous materials(such as SBA-15 or MCM-41),and the corresponding reaction mechanisms have been thoroughly revealed.It is sincerely expected that the in-depth discussion could give materials scientists certain inspiration to design brand-new dendritic mesoporous silica nanoparticles-based materials with superior capabilities towards CO_(2)capture,utilization,and storage.
文摘This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials.
基金supported by Specialized Research Fund for Doctoral Program of Higher Education of China (Grant No. 20060287019)Opening Research Fund of Jiangsu Provincial Key Laboratory of Tribology of China (Grant No. kjsmcx07001)Jiangsu Provincial Graduate Innovation Foundation of China (Grant No. CX08B-039Z)
文摘Nano-particles which can largely improve the microstructure and oxidation resistance of materials are often used as a strengthening component in metal matrix composites. However, few studies were reported on its application in the bond coat of duplex structure thermal barrier coating(TBC). Three kinds of NiCoCrAlY coatings strengthened by different nano-particles with the same addition (1%, mass fraction) were prepared by the laser cladding technique on Ni-based superalloy substrates, aiming to study the effects of the nano-particles on microstructure and oxidation resistance of NiCoCrAlY coatings (the bond coat of the duplex structure thermal barrier coatings). Scanning electron microscope (SEM), X-ray diffractometer(XRD) and thermogravimetry were employed to investigate their morphologies, phases and cyclic oxidation behaviors in atmosphere at 1 050℃, compared with the coating without nano-particles. With the addition of nano-particles, the growth pattern of the grains at the interface changed from epitaxial growth to non-epitaxial growth or part-epitaxial growth; slender dendrites were broken and cellularized; cracks and pores were restrained; and the oxidation weight-gain and the stripping resistance of the oxide scale were improved as well. Among the three kinds of nano-particles, the SiC nano-particles showed the most improvement on microstructure, while the CeO2 nano-particles were insufficient, but its effects on the oxidation resistance are the same as those of the SiC nano-particles. Based on the discussions of the influence mechanism, it is believed that CeO2 nano-particles would show better improvement than SiC nano-particles if the proper amount is added and the proper preparation technique of micro-nanometer composite powders is adopted, with the synergistic action of nanometer effect and reactive element effect.