Dune sand is a very abundant material in south of Algeria. Its high silica content gives a partial pozzolanic reactivity due to its crystalline state. This paper investigates the evolution of cement hydration based on...Dune sand is a very abundant material in south of Algeria. Its high silica content gives a partial pozzolanic reactivity due to its crystalline state. This paper investigates the evolution of cement hydration based on a binary addition particularly the reactivity of dune sand finely ground in the presence of an amorphous addition: silica fume or blast furnace slag. Thus, four combinations of binary additions by substitution have been chosen. The X-ray diffraction analyses performed on cement pastes containing additions have shown the importance of the mineralogy and silica content of additions on their pozzolanic reactivity. Dune sand becomes reactive at long term, especially when associated up to 10% of amorphous addition (blast furnace slag or silica fume). It results an increasing in mechanical strength of Ultra High Performance Concrete (UHPC) and an improvement of the microstructure.展开更多
Tensile strength of concrete were examined on its partial replacement of cement and sand using ground granulated blast furnace and quarry dust.The study examines its behaviour at different dimensions.This is to monito...Tensile strength of concrete were examined on its partial replacement of cement and sand using ground granulated blast furnace and quarry dust.The study examines its behaviour at different dimensions.This is to monitor the variation effect of these parameters on the growth rates of tensile to the optimum curing age.These include non linear conditions of tensile state,non-elastic and its brittle behaviour at all times as it express zero conditions in tension.This means that it has the ability to with stand pull force.It also reflects its weak ability to handle shear stress thus tends to cause deformation in material as it has poor elasticity.The reflection of its brittle influence the rate of tensile behaviour from concrete ductility.These are known to be a material on modern mechanics of concrete.These are also considered as quasi brittle material.This behaviour was reflected as the system considered evaluating the growth rate of tensile strength that replaced cement and sand with these locally sourced addictives.The developed model monitor other reflected influential parameters such as variation of concrete porosity due it compaction in placements,tensile behaviour reflects these effect that subject it to mechanical properties of concrete.The study expressed the reaction of these parameters in the simulation,the evaluation of these affected the details variation of tensile growth rate at different water cement ratios and curing age.The tensile behaviour that was monitored are based on these factors in the study.The derived model were validated with the a researcher results[24],and both parameters developed best fits correlation.The study is imperative because the system expressed the behaviour of tensile strength from concrete at different dimensions.Experts can applied these concept to monitor tensile behaviour considering these parameters in its growth rates.展开更多
The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sa...The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sand and Fe–Cr. A sodium silicate–CO_2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing(SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe–Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe–Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe–Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds.展开更多
文摘Dune sand is a very abundant material in south of Algeria. Its high silica content gives a partial pozzolanic reactivity due to its crystalline state. This paper investigates the evolution of cement hydration based on a binary addition particularly the reactivity of dune sand finely ground in the presence of an amorphous addition: silica fume or blast furnace slag. Thus, four combinations of binary additions by substitution have been chosen. The X-ray diffraction analyses performed on cement pastes containing additions have shown the importance of the mineralogy and silica content of additions on their pozzolanic reactivity. Dune sand becomes reactive at long term, especially when associated up to 10% of amorphous addition (blast furnace slag or silica fume). It results an increasing in mechanical strength of Ultra High Performance Concrete (UHPC) and an improvement of the microstructure.
文摘Tensile strength of concrete were examined on its partial replacement of cement and sand using ground granulated blast furnace and quarry dust.The study examines its behaviour at different dimensions.This is to monitor the variation effect of these parameters on the growth rates of tensile to the optimum curing age.These include non linear conditions of tensile state,non-elastic and its brittle behaviour at all times as it express zero conditions in tension.This means that it has the ability to with stand pull force.It also reflects its weak ability to handle shear stress thus tends to cause deformation in material as it has poor elasticity.The reflection of its brittle influence the rate of tensile behaviour from concrete ductility.These are known to be a material on modern mechanics of concrete.These are also considered as quasi brittle material.This behaviour was reflected as the system considered evaluating the growth rate of tensile strength that replaced cement and sand with these locally sourced addictives.The developed model monitor other reflected influential parameters such as variation of concrete porosity due it compaction in placements,tensile behaviour reflects these effect that subject it to mechanical properties of concrete.The study expressed the reaction of these parameters in the simulation,the evaluation of these affected the details variation of tensile growth rate at different water cement ratios and curing age.The tensile behaviour that was monitored are based on these factors in the study.The derived model were validated with the a researcher results[24],and both parameters developed best fits correlation.The study is imperative because the system expressed the behaviour of tensile strength from concrete at different dimensions.Experts can applied these concept to monitor tensile behaviour considering these parameters in its growth rates.
基金the DST–Fly Ash unit, New Delhi, India for their financial support (Grant Ref No.FAU/DST/600(52)/2012-13)Advance Analytical laboratory, Andhra University, India for the support in SEM–EDS studies
文摘The microstructure and mechanical properties of as-cast A356(Al–Si) alloy castings were investigated. A356 alloy was cast into three different molds composed of sand, ferrochrome(Fe–Cr) slag, and a mixture of sand and Fe–Cr. A sodium silicate–CO_2 process was used to make the necessary molds. Cylindrical-shaped castings were prepared. Cast products with no porosity and a good surface finish were achieved in all of the molds. These castings were evaluated for their metallography, secondary dendrite arm spacing(SDAS), and mechanical properties, including hardness, compression, tensile, and impact properties. Furthermore, the tensile and impact samples were analyzed by fractography. The results show that faster heat transfer in the Fe–Cr slag molds than in either the silica sand or mixed molds led to lower SDAS values with a refined microstructure in the products cast in Fe–Cr slag molds. Consistent and enhanced mechanical properties were observed in the slag mold products than in the castings obtained from either sand or mixed molds. The fracture surface of the slag mold castings shows a dimple fracture morphology with a transgranular fracture nature. However, the fracture surfaces of the sand mold castings display brittle fracture. In conclusion, products cast in Fe–Cr slag molds exhibit an improved surface finish and enhanced mechanical properties compared to those of products cast in sand and mixed molds.