期刊文献+
共找到3,035篇文章
< 1 2 152 >
每页显示 20 50 100
Gypsum-based Silica Gel Humidity-controlling Composite Materials:Preparation,Characterization,and Performance
1
作者 李曦 冉茂宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期337-344,共8页
Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based compos... Gypsum was used as substrate,and silica gel was mixed into substrate at a certain mass ratio to prepare humidity-controlling composites;moreover,the moisture absorption and desorption properties of gypsum-based composites were compared with adding different silica gel particle size and proportion.The morphological characteristics,the isothermal equilibrium moisture content curve,moisture absorption and desorption rate,moisture absorption and desorption stability,and humidity-conditioning performance were tested and analyzed.The experimental results show that,compared with pure-gypsum,the surface structure of the gypsum-based composites is relatively loose,the quantity,density and aperture of the pores in the structure increase.The absorption and desorption capacity increase along with the increase of silica gel particle size and silica gel proportion.When 3 mm silica gel particle size is added with a mass ratio of 40%,the maximum equilibrium moisture content of humidity-controlling composites is 0.161 g/g at 98% relative humidity(RH),3.22 times that of pure-gypsum.The moisture absorption and desorption rates are increased,the equilibrium moisture absorption and desorption rates are 2.68 times and 1.61 times that of pure-gypsum at 58.5% RH,respectively.The gypsum-based composites have a good stability,which has better timely response to dynamic humidity changes and can effectively regulate indoor humidity under natural conditions. 展开更多
关键词 humidity controlling composite materials GYPSUM silica gel
下载PDF
CoSnO_(3)/C nanocubes with oxygen vacancy as high-capacity cathode materials for rechargeable aluminum batteries
2
作者 Shuainan Guo Mingquan Liu +3 位作者 Haoyi Yang Xin Feng Ying Bai Chuan Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期883-892,共10页
Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-elec... Rechargeable aluminum batteries(RABs)are attractive cadidates for next-generation energy storage and conversion,due to the low cost and high safety of Al resources,and high capacity of metal Al based on the three-electrons reaction mechanism.However,the development of RABs is greatly limited,because of the lack of advanced cathode materials,and their complicated and unclear reaction mechanisms.Exploring the novel nanostructured transition metal and carbon composites is an effective route for obtaining ideal cathode materials.In this work,we synthesize porous CoSnO_(3)/C nanocubes with oxygen vacancies for utilizing as cathodes in RABs for the first time.The intrinsic structure stability of the mixed metal cations and carbon coating can improve the cycling performance of cathodes by regulating the internal strains of the electrodes during volume expansion.The nanocubes with porous structures contribute to fast mass transportation which improves the rate capability.In addition to this,abundant oxygen vacancies promote the adsorption affinity of cathodes,which improves storage capacity.As a result,the CoSnO_(3)/C cathodes display an excellent reversible capacity of 292.1 mAh g^(-1) at 0.1 A g^(-1),a good rate performance with 109 mAh g^(-1) that is maintained even at 1 A g^(-1) and the provided stable cycling behavior for 500 cycles.Besides,a mechanism of intercalation of Al^(3+)within CoSnO_(3)/C cathode is proposed for the electrochemical process.Overall,this work provides a step toward the development of advanced cathode materials for RABs by engineering novel nanostructured mixed transition-metal oxides with carbon composite and proposes novel insights into chemistry for RABs. 展开更多
关键词 Rechargeable aluminum batteries Mixed transition-metal oxides CoSnO_(3)/C Cathode material Oxygen vacancy
下载PDF
Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials 被引量:3
3
作者 Zhongqi Ren Jie Wang +3 位作者 Hewei Zhang Fan Zhang Shichao Tian Zhiyong Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期1-10,共10页
A new type of rubidium ion-imprinted polymer has been synthesized by the surface-imprinting technique using methacrylic acid as the functional monomer,the rubidium ion as the template,methanol as the solvent,and silic... A new type of rubidium ion-imprinted polymer has been synthesized by the surface-imprinting technique using methacrylic acid as the functional monomer,the rubidium ion as the template,methanol as the solvent,and silica as a carrier.Ethylene glycol dimethacrylate and 2,2-azobisisobutyronitrile were used as acrosslinker and an initiator,respectively.In addition,based on the macrocyclic effect of crown ethers,the 18-crown-6 ligand was introduced as a ligand to fix the template ions better.Scanning electron microscopy,zeta-potential analysis,Fourier transform infrared spectroscopy,thermogravimetric analysis,and X-ray photoelectron spectroscopy were performed to characterize the ion-imprinted polymer.The effects of the preparation and adsorption conditions on the adsorption performance of the rubidium ion-imprinted polymer were investigated.The results indicated that the rubidium ion-imprinted polymer has high selectivity and faster kinetics than other adsorbents,with an equilibrium adsorption capacity of 200.19 mg·g^(-1)at 298 K within 25 min.The sorption isotherm was well described by the Freundlich isotherm model,while the adsorption kinetics fitted the pseudo-second-order kinetic model.Consecutive adsorption-desorption experiments showed that the ion-imprinted polymer had good chemical stability and reusability. 展开更多
关键词 Surface-imprinted material ADSORPTION Aqueous solution silica Selectivity
下载PDF
DIFFUSION COUPLE BETWEEN HIGHSTRENGTH WEAR-RESISTING ALUMINUM BRONZE AND MACHINING TOOLS MATERIALS 被引量:14
4
作者 Li, Yuanyuan Zhang, Datung +2 位作者 Ngai Tungwai, Leo Xia, Wei Long, Yan 《中国有色金属学会会刊:英文版》 EI CSCD 1999年第1期8-10,10+12+9+11,共5页
INTRODUCTIONAluminumbronzeisanimportantengineeringmaterial.Itsexcelentphysical,mechanical,anticorosionandw... INTRODUCTIONAluminumbronzeisanimportantengineeringmaterial.Itsexcelentphysical,mechanical,anticorosionandwearresistingprop... 展开更多
关键词 WEAR resistance aluminum BRONZE tool materials DIFFUSION
下载PDF
SYNTHESIS OF MESOPOROUS POLY(STYRENE-co-MALEIC ANHYDRIDE)/SILICA HYBRID MATERIALS VIA A NONSURFACTANT-TEMPLATED SOL-GEL PROCESS 被引量:6
5
作者 Jie-bin Pang Kun-yuan Qiu Yen Wei Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, USA. 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2000年第5期469-472,共4页
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid... Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase. 展开更多
关键词 mesoporous hybrid material poly(styrene-co-maleic anhydride)/silica citric acid nonsurfactant template sol-gel process
下载PDF
Structure Characterization and Dephosphorization Effect Analysis of Oyster Shell-silica Micropowder Waste Water Dephosphorization Materials 被引量:2
6
作者 赖寿莲 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第1期33-38,共6页
In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping ... In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping oyster shell and silica micro-powder.Different concentrations of phosphorus-contained waste water were simulated with potassium dihydrogen phosphate solution,the effect of dephosphorization was tested with phosphomolybdenum blue spectrophotometer method,and the crystal phase and microstructure of materials were characterized by XRD and SEM methods. It was indicated that dephosphorization was completed in 6 h when the initial phosphorus concentration in waste water was lower than 15 mg/L, and the dephosphorization time prolonged as the increase of phosphorus concentration. It was observed that the pH value of waste water influenced dephosphorization significantly, and neutral subalkalic environment favored dephosphorization. When the pH value was 11, the efficiency of dephosphozation was the greatest. For waste water with an initial concentration of 20 mg/L, the dephosphozation rate is close to 100% in8 h. 展开更多
关键词 oyster shell silica micro-powder hydrothermal reaction waste water dephosphorization materials environmental-friendly material
下载PDF
Electrical Conductivity and Corrosion Resistanceof ZnFe _(2)O _(4) Based Materials Used as Inert Anodefor Aluminum Electrolysis 被引量:3
7
作者 YU Xian-jin ZHANG Guang-li +2 位作者 QIU Zhu-xian ZHAO Min-shou SU Qiang 《Advances in Manufacturing》 SCIE CAS 1999年第3期251-254,共4页
ZnFe 2O 4 and ZnFe 2O 4 based materials were tested to obtain the electrical conductivity and corrosion resistance in melting bath for aluminum electrolysis. The results proved that adequate additives, such as Ni 2O 3... ZnFe 2O 4 and ZnFe 2O 4 based materials were tested to obtain the electrical conductivity and corrosion resistance in melting bath for aluminum electrolysis. The results proved that adequate additives, such as Ni 2O 3 CuO, Cu, ZnO and CeO 2 would increase the electrical conductivity, and the ZnFe 2O 4 based anodes with these additives were of good corrosion resistance. The current density on anode, the mole ratio of NaF/AlF 3 (MR) and the content of alumina in the bath effect the anode corrosion rate in different way. 展开更多
关键词 aluminum electrolysis ZnFe _(2)O _(4) based materials inert anode for aluminum electrolysis
下载PDF
Influence of Silica Fume on the Reflectivity and Transmission Efficiency of Cement-Based Materials 被引量:2
8
作者 Xiuzhi Zhang Guodong Zhang +1 位作者 Yu Zhang Zonghui Zhou 《Journal of Applied Mathematics and Physics》 2014年第9期843-847,共5页
As a kind of mineral admixture, silica fume has low permittivity, which will affect the electromagnetic properties of cement-based materials. To study the effect of silica fume on the properties of cement-based materi... As a kind of mineral admixture, silica fume has low permittivity, which will affect the electromagnetic properties of cement-based materials. To study the effect of silica fume on the properties of cement-based materials, the reflectivity, transmission efficiency and pore structure were analyzed by using the vector network analyzer and mercury injection apparatus. Results show that silica fume can make the mortar more compact and the porosity of sample with 9% silica fume is only 17.8%, which is far lower than the control sample;With the increase of the silica fume content, the peak of reflectivity curve increases from -23.2 dB to -16.0 dB, and then decreases from -16.04 dB to -28.7 dB in the frequency range of 6 – 18 GHz. Reflectivity of sample with 3% content of silica fume is lower than other samples within 26.5 - 40 GHz;Transmission efficiency of samples shows the trend of increase with silica fume content increases from 0% to 6% within 8.2 - 12.4 GHz, 12 - 18 GHz and 26.5 - 40 GHz, but when the content increases from 6% to 9%, the transmission efficiency of samples reduces. 展开更多
关键词 silica Fume CEMENT-BASED materials REFLECTIVITY TRANSMISSION EFFICIENCY
下载PDF
SYNTHESIS OF HYBRID MESOPOROUS POLYSTYRENE-SILICA MATERIALS WITH NON-SURFACTANT CITRIC ACID AS TEMPLATE VIA SOL-GEL PROCESS
9
作者 Jie Bai Jin-yu Zheng +1 位作者 Kun-yuan Qiu Yen Wei Department of Polymer Science & Engineering College of Chemistry & Molecular Engineering, Peking University Beijing 100871, China Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第6期565-572,共8页
Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom tran... Hybrid mesoporous polystyrene-silica materials were successfully prepared through HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and triethoxysilyl-functionalized polystyrene obtained via atom transfer radical polymerization (ATRP) of styrene, in the presence of citric acid (CA) as non-surfactant template or pore-forming agent and followed by ethanol extraction to remove template molecules. The materials were characterized by infrared spectroscopy OR), N-2 adsorption-desorption measurements, powder X-ray diffraction (XRD), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The results indicate that the materials prepared with 50 wt%-60 wt% template contents have average pore sizes of 2-3 nm and large surface areas (ca. 886 m(2)/g) as well as high pore volumes (ca. 0.53 cm(3)/g). The mesoporosity arises from interconnected channels and pores with disordered arrangements. The pore diameters and pore volumes increase as the template content is increased. The pore diameters show a little change upon heating at 200degreesC overnight. However, the materials do not have good hydrothermal stability. 展开更多
关键词 atom transfer radical polymerization hybrid material MESOPOROUS POLYSTYRENE silica
下载PDF
New Technique for Making Composite Materials—Field Assisted Diffusion Bonding of Alumina to Aluminum
10
作者 丁立平 《Rare Metals》 SCIE EI CAS CSCD 1992年第1期66-67,共2页
There are two ways to join ceramics to metals: brazing and bonding. However, brazing processes are time-comsuming and energy-comsuming and is limited by the low working temperature. Generally speaking, bonding, or spe... There are two ways to join ceramics to metals: brazing and bonding. However, brazing processes are time-comsuming and energy-comsuming and is limited by the low working temperature. Generally speaking, bonding, or specifically, Diffusion Bonding performs better than brazing. Besides diffusion bonding, a more specialized technique is Field Assisted Diffusion Bonding (FADB). 展开更多
关键词 ALUMINA BONDING aluminum and Alloys BONDING Composite materials BONDING
下载PDF
Preparation of Magnesia Insulation Materials by Walnut Shell Powder Impregnated with Silica Sol
11
作者 JIAO Changfa LI Guohua KANG Chi 《China's Refractories》 CAS 2022年第3期34-37,共4页
In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregat... In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregates(using high purity magnesia powder as starting material and potassium oleate as the foaming agent),middle grade magnesia powder,calcium aluminate cement,and SiO_(2) micropowder as starting materials,introducing walnut shell powder impregnated with silica sol(short for Sws)as a pore-forming agent.The effects of the Sws addition(0,10%,15%,and 20%,by mass)and the sintering temperature(1300,1350,1400,and 1480℃)on the properties of magnesia insulation materials were studied.The results show that(1)for the specimens fired at 1480℃,when the Sws addition is 10%,the cold compressive strength is 22 MPa;when the Sws addition is 20%,the thermal conductivity is 0.368 W·m^(-1)·K^(-1)(350℃);(2)nano-silica in the silica sol reacts with MgO in the matrix to form forsterite,which encapsulates the pores volatilized from the walnut shell powder and forms closed pores. 展开更多
关键词 foaming method ignition loss method walnut shell powder impregnated with silica sol magnesia porous aggregates magnesia insulation materials
下载PDF
Oxidation Kinetics of Aluminum Powders in a Gas Fluidized Bed Reactor in the Potential Application of Surge Arresting Materials
12
作者 Hong Shih 《Materials Sciences and Applications》 2019年第3期253-292,共40页
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre... In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general. 展开更多
关键词 aluminum Spherical Power GAS FLUIDIZATION Bed Oxidation Mechanism Oxide Growth Rate Gibbs Free Energy Ellingham Diagram Mathematical Modeling Dynamic System Plasma DIFFUSION DIFFUSION Coefficient Crystallographic Defect Vacancy Pressure Temperature Flow Laplace Transform Equation Boundary Condition Fick’s Second Law Software Experimental Theoretical SURGE ARRESTING materials Analytical Solution
下载PDF
MORPHOLOGY OF AMORPHOUS SILICA DURING ALUMINUM REACTIVE PENETRATION 被引量:3
13
作者 Zhou, Z. Gan, Q.S. Ding, P.D. 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第4期944-948,共5页
The reduction of volume of silica glass during aluminum reactive penetration was observed experimentally. The liquid aluminum infiltrates easily into the cavities while the released silicon is solved in the liquid alu... The reduction of volume of silica glass during aluminum reactive penetration was observed experimentally. The liquid aluminum infiltrates easily into the cavities while the released silicon is solved in the liquid aluminum, and Al/Al2O3 composites could be obtained. The experimental results show that Al/Al2O3 composites can be transformed into Al2O3 grains by oxygen in the cavities of Al/Al2O3 composites during the longer penetration treatment. The formation of alumina is a sintering process, in which liquid aluminum, particulate alumina and oxygen play an important role. The transformtion process has shown that there is a relationship of σAl2O3-Al2O3 2O3-Al, where σAl2O3-Al2O3 is the grain boundary energy of alumina, and σAl2O3-Al is the interface energy between aluminum and alumina. The formation temperature by aluminum reactive penetration is much lower than that by sintering. 展开更多
关键词 ALUMINA aluminum Metallic matrix composites MORPHOLOGY silica
下载PDF
Rechargeable metal(Li, Na, Mg, Al)-sulfur batteries: Materials and advances 被引量:4
14
作者 Xue Liu Yan Li +2 位作者 Xu Xu Liang Zhou Liqiang Mai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期104-134,I0004,共32页
Energy and environmental issues are becoming more and more severe and renewable energy storage technologies are vital to solve the problem.Rechargeable metal(Li,Na,Mg,Al)-sulfur batteries with low-cost and earth-abund... Energy and environmental issues are becoming more and more severe and renewable energy storage technologies are vital to solve the problem.Rechargeable metal(Li,Na,Mg,Al)-sulfur batteries with low-cost and earth-abundant elemental sulfur as the cathode are attracting more and more interest for electrical energy storage in recent years.Lithium-sulfur(Li-S),room-temperature sodium-sulfur(RT Na-S),magnesium-sulfur(Mg-S)and aluminum-sulfur(Al-S)batteries are the most prominent candidates among them.Many obvious obstacles are hampering the developments of metal-sulfur batteries.Li-S and Na-S batteries are encumbered mainly by anode dendrite issues,polysulfides shuttle and low conductivity of cathodes.Mg-S and Al-S batteries are short of suitable electrolytes.In this review,relationships between various employed nanostructured materials and electrochemical performances of metal-sulfur batteries have been demonstrated.Moreover,the selections of suitable electrolytes,anode protection,separator modifications and prototype innovations are all crucial to the developments of metal-sulfur batteries and are discussed at the same time.Herein,we give a review on the advances of Li-S,RT Na-S,Mg-S and Al-S batteries from the point of view of materials,and then focus on perspectives of their future developments. 展开更多
关键词 Lithium sulfur batteries Sodium sulfur batteries Magnesium sulfur batteries aluminum sulfur batteries Energy materials
下载PDF
A MOLD MATERIAL USED FOR TITANIUM-ALUMINUM ALLOY-CALCIA 被引量:1
15
作者 Guo Jingjie, Su Yanqing, Liu Yuan, Ding Hongsheng, Ren Zhijiang and Jia JunSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China 《中国有色金属学会会刊:英文版》 CSCD 1998年第2期41-45,共5页
AMOLDMATERIALUSEDFORTITANIUMALUMINUMALLOY—CALCIA①GuoJingjie,SuYanqing,LiuYuan,DingHongsheng,RenZhijiangandJ... AMOLDMATERIALUSEDFORTITANIUMALUMINUMALLOY—CALCIA①GuoJingjie,SuYanqing,LiuYuan,DingHongsheng,RenZhijiangandJiaJunSchoolofMate... 展开更多
关键词 titaniumaluminum ALLOY MOLD material calcia CASTING
下载PDF
Preparation of Nanoporous Thermal Insulating Materials and Their Application as Ladle Linings 被引量:1
16
作者 YU Jingkun HAN Lu 《China's Refractories》 CAS 2014年第4期13-15,共3页
The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was... The nanoporous thermal insulating material was prepared by using fumed silica,SiC powder and glass fiber as starting materials,the appropriate thickness of the nanoporous thermal insulating material lined in ladle was discussed by the simulation method,and the effect of its application as ladle lining was investigated.The results show that the thermal conductivity of the nanoporous thermal insulating material prepared in composition of fumed silica: SiC powder: glass fiber =75: 20:5 (in mass) is 0.023 W · m^-1 · K^-1 at 1 000 ℃,the appropriate thickness of the nanoporous thermal insulating material lined in ladle is ≤ 5 mm and the average temperature of the ladle outside surface when lined with the nanoporous thermal insulating material is 95 ℃ lower than that with the ordinary thermal insulating material. 展开更多
关键词 fumed silica glass fiber NANOPOROUS thermal insulating material thermal conductivity ladle lining
下载PDF
Thermo-mechanical Properties of Al/Si Incorporated Low Carbon Al_2O_3-C Slide Plate Materials 被引量:1
17
作者 LIU Xinhong ZHONG Xiangchong 《China's Refractories》 CAS 2013年第1期7-11,共5页
Low carbon Al2O3- C refractory materials were prepared by "Al/Si metal incorporated, insitu formed non-oxides" method using corundum, Al powder, Si powder and flake graphite as starting materials. High temperature s... Low carbon Al2O3- C refractory materials were prepared by "Al/Si metal incorporated, insitu formed non-oxides" method using corundum, Al powder, Si powder and flake graphite as starting materials. High temperature strength, stress -strain relationship and thermal shock resistance of these composites were investigated. The results show that these composites possess improved high temperature strength and good thermal shock resistance. When A1 addition increases from 0 to 8 mass%, correspondingly, Si addition decreases from 8 mass% to O, hot modulus of rupture at 1 400 ℃ increases significantly from 10. 4 MPa to 32. 4 MPa; the maximum strain under 6.5 MPa stress at 1400 ℃ decreases from 215 t.tm to 90 μm; residual strength ratio after 3 thermal shock cycles (1 100 ℃ , air quenching) decreases from 80% to 65%. This may be attributed to in-situ formation of nonoxides because Al and Si react with C, CO and N, to form Al4C3 , AlN and SiC creating strengthening and toughening effects. 展开更多
关键词 thermo-meehanieal properties aluminum/ silicon incorporation oxidenonoxide refractory materials
下载PDF
Hydrogen Production via Hydrolysis and Alcoholysis of Light Metal-Based Materials:A Review 被引量:1
18
作者 Liuzhang Ouyang Jun Jiang +2 位作者 Kang Chen Min Zhu Zongwen Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期75-104,共30页
As an environmentally friendly and high-density energy carrier,hydrogen has been recognized as one of the ideal alternatives for fossil fuels.One of the major challenges faced by“hydrogen economy”is the development ... As an environmentally friendly and high-density energy carrier,hydrogen has been recognized as one of the ideal alternatives for fossil fuels.One of the major challenges faced by“hydrogen economy”is the development of efficient,low-cost,safe and selective hydrogen generation from chemical storage materials.In this review,we summarize the recent advances in hydrogen production via hydrolysis and alcoholysis of light-metal-based materials,such as borohydrides,Mg-based and Al-based materials,and the highly efficient regeneration of borohydrides.Unfortunately,most of these hydrolysable materials are still plagued by sluggish kinetics and low hydrogen yield.While a number of strategies including catalysis,alloying,solution modification,and ball milling have been developed to overcome these drawbacks,the high costs required for the“one-pass”utilization of hydrolysis/alcoholysis systems have ultimately made these techniques almost impossible for practical large-scale applications.Therefore,it is imperative to develop low-cost material systems based on abundant resources and effective recycling technologies of spent fuels for efficient transport,production and storage of hydrogen in a fuel cell-based hydrogen economy. 展开更多
关键词 HYDROLYSIS ALCOHOLYSIS Light metal-based materials Borohydrides Magnesium aluminum Hydrogen production
下载PDF
Synthesis and characterization of aluminum particles coated with uniform silica shell 被引量:4
19
作者 程志鹏 杨毅 +1 位作者 李凤生 潘振华 《中国有色金属学会会刊:英文版》 EI CSCD 2008年第2期378-382,共5页
The silica coated aluminum composite particles were prepared by hydrolysis–condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of aluminum particle.The structure,morphology,and properties of th... The silica coated aluminum composite particles were prepared by hydrolysis–condensation polymerization of tetraethylorthosilicate(TEOS)on the surface of aluminum particle.The structure,morphology,and properties of the silica coated aluminum were studied.The peaks of Si—O—Si are presented in the Fourier transform infrared(FT-IR)spectrum of the composite particles.The thickness of the silica shell is about 80 nm according to the results of transmission electron microscopy(TEM)and laser particle size analysis,while the mean diameter of the aluminum particle is 7.13μm.The mass fraction of silica in the sample was determined by fluorescent X-ray spectrometry(XRF).Result of the thermogravimetric analysis(TGA)indicates that thermal stability of silica coated aluminum particles is better than that of pure aluminum particles at low temperature while more reactive at high temperature. 展开更多
关键词 微粒 硅土 分析方法
下载PDF
Powder Metallurgical Fabrication and Microstructural Investigations of Aluminum/Steel Functionally Graded Material 被引量:2
20
作者 Mahmoud M. Nemat-Alla Moataz H. Ata +1 位作者 Mohamed R. Bayoumi Wael Khair-Eldeen 《Materials Sciences and Applications》 2011年第12期1708-1718,共11页
Aluminum/steel electric transition joints (ETJs) are used in aluminum reduction cell for the purpose of welding aluminum rod and steel bracket components. Solid state welding process used for joining aluminum and stee... Aluminum/steel electric transition joints (ETJs) are used in aluminum reduction cell for the purpose of welding aluminum rod and steel bracket components. Solid state welding process used for joining aluminum and steel at the electric transition joints have the drawbacks of cracking and separation at the interface surfaces. Cracking and separation at the electric transition joints are caused by the stress singularities that developed due to the mismatch in thermal and mechanical properties of each material. To overcome the drawback of electric transition joints, aluminum/steel functionally graded may be used as electric transition joints or proposed. Therefore manufacturing and investigation of aluminum/steel functionally graded materials fabricated by powder metallurgy process were carried out through the current work. Different samples with different layers of aluminum/steel functionally graded materials were compacted using steel die and punch at the same compacted pressure and sintered temperature. After investigating the different samples of aluminum/steel functionally graded materials under different fabrication conditions, the suitable fabrication regime was determined with the aid of microscopic observations. 展开更多
关键词 POWDER METALLURGY Functionally GRADED materials aluminum/Steel Electric Transition Joint MICROSTRUCTURAL Investigations
下载PDF
上一页 1 2 152 下一页 到第
使用帮助 返回顶部