As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting t...As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application.展开更多
Platinum(Pt)supported on Zinc(Zn)modified silicalite-1(S-1)zeolite(denoted as Pt-Zn/S-1)was prepared by using a wetness-impregnation method and applied in the n-hexane aromatization reaction for the first time.Both Le...Platinum(Pt)supported on Zinc(Zn)modified silicalite-1(S-1)zeolite(denoted as Pt-Zn/S-1)was prepared by using a wetness-impregnation method and applied in the n-hexane aromatization reaction for the first time.Both Lewis and Bronsted acid sites were detected in Pt-Zn/S-1 catalyst by means of FT-IR adsorption of NH3 experiment,which were identified as mostly weak and medium ones.Besides,Pt and Zn species showed strong interaction,as revealed by the TPR(Temperature-programmed reduction)and XPS(X-ray photoelectron spectroscopy)experiments.Pt-Zn/S-1 catalyst exhibited excellent aromatization function rather than isomerization and cracking side reactions in the conversion of n-hexane.Pulse experimental study showed that 75.6%of n-hexane conversion and 76.8%of benzene selectivity were obtained over Pt0.1-Zn60/S-l catalyst at 550℃ and under atmospheric pressure.By spectroscopy tests and pulse experimental results,it was concluded that the n-hexane aromatization over Pt-Zn/S-1 catalyst follows a metal-acid bifunctional mechanism.Furthermore,with the assistance of Zn,the electron-deficient Pt species in Pt-Zn/S-1 showed good sulfur tolerance performance.展开更多
Zeolite X was synthesized by a two-step hydrothermal method using natural stellerite zeolite as the silicon seed,and its adsorption performance for Cd^(2+)and Ni^(2+)ions was experimentally and comprehensively investi...Zeolite X was synthesized by a two-step hydrothermal method using natural stellerite zeolite as the silicon seed,and its adsorption performance for Cd^(2+)and Ni^(2+)ions was experimentally and comprehensively investigated.The effects of p H,zeolite X dosage,contact time,and temperature on adsorption performance for Cd^(2+)and Ni^(2+)ions over were studied.The adsorption process was endothermic and spontaneous,and followed the pseudo-second-order kinetic and the Langmuir isotherm models.The maximum adsorption capacitiesfor Cd^(2+)and Ni^(2+)ions at 298 K were 173.553 and 75.897 mg.g-1,respectively.Ion exchange and precipitation were the principal mechanisms for the removal of Cd^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption.Ion exchange was the principal mechanisms for the removal of Ni^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption and precipitation.The zeolite X converted from stellerite zeolite has a low n(Si/Al),abundant hydroxyl groups,and high crystallinity and purity,imparting a good adsorption performance for Cd^(2+)and Ni^(2+)ions.This study suggests that zeolite X converted from stellerite zeolite could be a useful environmentally-friendly and effective tool for the removal of Cd^(2+)and Ni^(2+)ions from aqueous solutions.展开更多
Li4Si O4 has been regarded as one of the most promising high-temperature CO2 sorbents.However,for practical applications,its CO2sorption kinetics,cycling stability and sorption properties at lower temperatures or lowe...Li4Si O4 has been regarded as one of the most promising high-temperature CO2 sorbents.However,for practical applications,its CO2sorption kinetics,cycling stability and sorption properties at lower temperatures or lower CO2 concentrations have to be improved.In this contribution,four Li4Si O4 sorbents were synthesized from zeolite precursors MCM-41,MCM-48,TS-1,and ZSM-5.The CO2 uptake,cycling stability and the optimal CO2 sorption conditions were investigated.Among the samples,MCM-41-Li4Si O4 showed the best cycling stability at 650°C,with a stable reversible CO2 uptake of 29.1 wt%under 100 vol%CO2 during 20 cycles.But its sorption kinetics and CO2 uptakes at lower temperatures and lower CO2 concentrations need to be improved.We then demonstrated that the sorption kinetics can be improved by modifying the MCM-41 precursor with metals such as Al,Ti,Ca,and Na.The Na-MCM-41-Li4Si O4 sample exhibited the highest sorption rate,and reached the equilibrium sorption capacity close to the theoretical value of 36.7 wt%within 20 min.In addition,we proved that coating the MCM-41-Li4Si O4with Na2CO3and K2CO3can significantly increase the CO2uptakes at lower temperatures(e.g.550℃)and lower CO2concentrations(10–20 vol%).At 550℃ and under 20 vol%CO2,15 wt%K2CO3-MCM-41-Li4Si O4 and 10 wt%Na2CO3-MCM-41-Li4Si O4 sorbents resulted in a CO2 uptake of 32.2 wt%and 34.7 wt%,respectively,which are much higher than that of MCM-41-Li4Si O4(11.8 wt%).These two sorbents also showed good cycling stability.The promoiting mechasnim by alkali carbonate coating was discussed by a doubleshell model.展开更多
Solid amine-based adsorbents were widely studied as an alternative to liquid amine for post-combustion CO_(2)capture(PCC).However,most of the amine adsorbents suffer from low thermal stability and poor cyclic regenera...Solid amine-based adsorbents were widely studied as an alternative to liquid amine for post-combustion CO_(2)capture(PCC).However,most of the amine adsorbents suffer from low thermal stability and poor cyclic regenerability at the temperature of hot flue gases.Here we present an amine loaded proton type Y zeolite(HY)where the amines namely monoethanolamine(MEA)and ethylenediamine(ED)are chemical immobilized via ionic bond to the zeolite framework to overcome the amine degradation problem.The MEA and ED of 5%,10%and 20%(mass)concentration-immobilized zeolites were characterized by X-ray diffraction,Fourier-transform infrared spectroscopy,and N_(2)-196℃ adsorption to confirm the structure integrity,amine functionalization,and surface area,respectively.The determination of the amine loading was given by C,H,N elemental analysis showing that ED has successfully grafted almost twice as many amino groups as MEA within the same solvent concentration.CO_(2)adsorption capacity and thermal stability of these samples were measured using thermogravimetric analyser.The adsorption performance was tested at the adsorption temperature of 30,60 and 90℃,respectively using pure CO_(2)while the desorption was carried out with pure N_(2)purge at the same temperature and then followed by elevated temperature at 150℃.It was found that all the amine@HY have a substantial high selectivity of CO_(2)over N_(2).The sample 20%ED@HY has the highest CO_(2)adsorption capacity of1.76 mmol·g^(-1)at 90℃ higher than the capacity on parent Na Y zeolite(1.45 mmol·g^(-1)only).The amine@HY samples presented superior performance in cyclic thermal stability in the condition of the adsorption temperature of 90℃ and the desorption temperature of 150℃.These findings will foster the design of better adsorbents for CO_(2)capture from flue gas in post-combustion power plants.展开更多
Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeol...Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeolite microspheres (Ca-MZS) and iron cross-linked nano-Fe3O4 modified zeolite microspheres (Fe-MZS) were prepared and compared for their adsorption performance.The effects of adsorbent dosage,solution pH,initial concentration and ion content on the removal of Cu^2+ from wastewater are investigated,and the adsorption kinetics and isotherms for the adsorbent materials were analyzed.The experimental results indicate that for the initial concentration of Cu^2+ of 30 mg/L,the adsorption is noted to be most stable.The optimal initial pH for adsorbing Cu^2+ is observed to be 5.5.At an optimal dosage of Ca-MZS of 900 mg/L,the adsorption capacity is measured to be 28.25 mg/g,along with the removal rate of 72.49%.The addition of Na+ and K+ affects the adsorption of Cu^2+.For the Na^+ and K^+ concentration of 0.2 mmol/L,the Cu^2+ removal rate by Ca-MZS drops to 11.94% and 22.12%,respectively.As compared with the adsorbents such as Natural Zeolite (NZ),Ca-MS and Fe-MZS,Ca-MZS demonstrates the best removal effect in solution,where the removal rate reaches 84.27%,with the maximum adsorption capacity of 28.09 mg/g.The Cu^2+ adsorption kinetics of Ca-MZS is observed to follow the Elovich kinetic model,with the adsorption isotherm data fitting the Freundlich isotherm model by using the non-linear method.展开更多
The intrinsically safe Zn||I_(2) battery,one of the leading candidates aiming to replace traditional Pb-acid batteries,is still seriously suffering from short shelf and cycling lifespan,due to the uncontrolled I_(3)^(...The intrinsically safe Zn||I_(2) battery,one of the leading candidates aiming to replace traditional Pb-acid batteries,is still seriously suffering from short shelf and cycling lifespan,due to the uncontrolled I_(3)^(−)-shuttling and dynamic parasitic reactions on Zn anodes.Considering the fact that almost all these detrimental processes terminate on the surfaces of Zn anodes,modifying Zn anodes’surface with protecting layers should be one of the most straightforward and thorough approaches to restrain these processes.Herein,a facile zeolite-based cation-exchange protecting layer is designed to comprehensively suppress the unfavored parasitic reactions on the Zn anodes.The negatively-charged cavities in the zeolite lattice provide highly accessible migration channels for Zn^(2+),while blocking anions and electrolyte from passing through.This low-cost cation-exchange protecting layer can simultaneously suppress self-discharge,anode corrosion/passivation,and Zn dendrite growth,awarding the Zn||I_(2) batteries with ultra-long cycle life(91.92%capacity retention after 5600 cycles at 2 A g^(−1)),high coulombic efficiencies(99.76%in average)and large capacity(203–196 mAh g^(−1) at 0.2 A g^(−1)).This work provides a highly affordable approach for the construction of high-performance Zn-I_(2) aqueous batteries.展开更多
In this work, the zeolite-Y was ion-exchanged by introducing silver cations into the framework of microsized nano-porous sodium zeolite-Y using a liquid-phase ion exchanged method. The Ag+ion-exchanged zeolite, was th...In this work, the zeolite-Y was ion-exchanged by introducing silver cations into the framework of microsized nano-porous sodium zeolite-Y using a liquid-phase ion exchanged method. The Ag+ion-exchanged zeolite, was then embedded into the Matrimid5218 matrix to form novel mixed matrix membranes(MMMs). The particles and MMMs were characterized by ultraviolet-visible diffuse reflectance spectroscopy(UV–vis DRS), N2adsorption–desorption isotherm, X-ray diffraction(XRD), Fourier transform infrared(FTIR) and scanning electron microscopy(SEM). Furthermore, the effects of filler content(0–20wt%) on pure and mixed gas experiments, feed pressure(2–20 bar) and operating temperature(35–75 oC)on CO2/CH4transport properties of Matrimid/Ag Y MMMs were considered. Characterization results confirmed an appropriate ion-exchange treatment of the zeolites. The SEM results confirmed the superior interfacial adhesion between polymer and zeolites, particularly in the case of Matrimid/Ag Y membranes.This is due to the proper silverous zeolite/Matrimid functional groups’ interactions. The gas permeation results showed that the CO2permeability increased about 123%, from 8.34 Barrer for pure Matrimid to18.62 Barrer for Matrimid/Ag Y(15 wt%). The CO2/CH4selectivity was improved about 66%, from 36.3 for Matrimid to 60.1 for Matrimid/Ag Y(15 wt%). The privileged gas separation performance of Matrimid/Ag Y(15 wt%) was the result of a combined effect of facilitated transport mechanism of Ag+ions as well as the intrinsic surface diffusion mechanism of Y-type zeolite. In order to survey the possibility of using the developed MMMs in industry, the CO2-induced plasticization effect and mixed gas experiment were accomplished. It was deduced that the fabricated MMMs could maintain the superior performance in actual operating conditions.展开更多
2,6-Dimethylnaphthalene (2,6-DMN) is a key intermediate for polyethylene naphthalate synthesis. The selective synthesis of 2,6-DMN from naphthalene and methanol was carried out over different zeolites (HZSM-5, Hβ, HU...2,6-Dimethylnaphthalene (2,6-DMN) is a key intermediate for polyethylene naphthalate synthesis. The selective synthesis of 2,6-DMN from naphthalene and methanol was carried out over different zeolites (HZSM-5, Hβ, HUSY and SAPO-11) modified by 0.1wt% PdO under atmospheric pressure. Among the adopted zeolites, SAPO-11 exhibits exceptional shape-selectivity and stability to synthesize 2,6-dimethylnaphthalene from methylation of naphthalene, due to the special pore structure of SAPO-11 which inosculated better with 2,6-dimethylnaphthalene than with 2,7-dimethylnaphthalene.展开更多
The effects of the initial framework SiO2/Al2O3 ratio and temperature on the structural changes of NaY zeolites during hydrothermal treatments are studied. Two samples with different framework SiO2/Al2O3 ratios are ...The effects of the initial framework SiO2/Al2O3 ratio and temperature on the structural changes of NaY zeolites during hydrothermal treatments are studied. Two samples with different framework SiO2/Al2O3 ratios are subjected to hydrothermal treatment at four different temperatures. For zeolite with a lower initial SiO2/Al2O3 ratio of 4.2, mesopores are easily formed because more framework aluminum is detached. Moreover, two kinds of mesopores are produced at a higher temperature due to the interconnection of vacancies and smaller mesopores. For zeolite with a higher initial SiO2/Al2O3 ratio of 6.0, there are less mesopores formed as compared with the lower initial SiO2/Al2O3 ratio sample, but there are some macropores formed. This may be attributed to the isolation of vacancies and the different distributions of aluminum in the crystal lattice of the zeolite. The experiment data show that NaY with the SiO2/Al2O3 ratio of 6.0 retains a high relative crystallinity during the hydrothermal treatment. This proves that a high framework SiO2/Al2O3 ratio benefits the stability of zeolite.展开更多
ITQ-2 zeolites were prepared by sequential alkali-swelling and ultrasonic-delamination of precursor MCM-22 and characterized by X-ray powder diffraction, scanning electron microscopy, nitrogen adsorption-desorption, a...ITQ-2 zeolites were prepared by sequential alkali-swelling and ultrasonic-delamination of precursor MCM-22 and characterized by X-ray powder diffraction, scanning electron microscopy, nitrogen adsorption-desorption, ammonia temperature-programmed desorption and in-situ Fourier-transform infrared spectroscopy. The delamination induced a change in the morphology of ITQ-2 zeolites from aggregated thin platelets to scattered platelets, together with a significant increase in external specific surface area, which reached a plateau at the ultrasonic treatment time of 3 h. The catalytic cracking of n-dodecane over ITQ-2 zeolites was evaluated with ITQ-2 coated on the inside wall of a tubular reactor at 550 ℃ and 4 MPa. The sample obtained by ultrasonic treatment of 3 h (ITQ-2-3) gave the highest initial conversion of n-dodecane, whereas those of 5 h and I h gave the conversion even lower than MCM-22, which was in agreement with the trend of the ratio of strong Lewis acid to the total acid amount. Although the amount of cokes deposited on ITQ-2-3 was larger than that on MCM-22, the former deactivated slowly, suggesting that a large external specific surface area benefits the stability of zeolite coatings,展开更多
Ti02 coatings on natural feather zeolite are respectively prepared by a collosol (Sol-gel) method and two powder coating methods with deionizod water or dehydrated ethanol as a dispersant. During degradation of orth...Ti02 coatings on natural feather zeolite are respectively prepared by a collosol (Sol-gel) method and two powder coating methods with deionizod water or dehydrated ethanol as a dispersant. During degradation of orthomono- chlorphenol solutions by ultraviolet, the strong adsorption capability of the zeolite results in increased concentration of substrate on its surface. The Ti(h film coated on feather zeolite further enhances the photocatalytic activity. The TiO~ film on the zeolite prepared by the Sol-gel method is found more effective as a catalyst than that by two powder coating methods.展开更多
Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<s...Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<sup>2+</sup>) by temperature-programmed desorption of CO<sub>2</sub> (CO<sub>2</sub>-TPD). Others results were obtained by infrared to complete the study. The results of this research showed, in the physisorption region (213 - 473 K), that the cationic exchanges on NaX zeolite with bivalent cations increase slightly the interactions of CO<sub>2</sub> molecule with adsorbents and/or cationic site. Indeed, the desorption energies of physisorbed CO<sub>2</sub> obtained on the reference zeolite NaX (13.5 kJ·mol<sup>-1</sup>) are lower than that of exchanged zeolites E-CaX and E-BaX (15.77 and 15.17 kJ·mol<sup>-1</sup> respectively). In the chemisorbed CO<sub>2</sub> region (573 - 873 K), the desorption energies related to desorbed species (bidentate carbonates: CO<sub>3</sub>2-</sup>) on the exchanged zeolites E-CaX and E-BaX are about 81 kJ·mol<sup>-1</sup>, higher than the desorbed species (bicarbonates: HCO<sub>3</sub>2-</sup>) on the reference R-NaX (62 kJ·mol<sup>-1</sup>). In addition, the exchanged E-BaX zeolite develops the secondary adsorption sites corresponding to bicarbonates species with desorption energies of 35 kJ·mol<sup>-1</sup> lower to desorption energies of bicarbonates noted on the reference zeolite NaX.展开更多
To deal with the brittleness and crystal grain interfacial defects of zeolite membranes, and to confine the pore size distribution of inorganic membranes in a limited range, a process method for composite membranes of...To deal with the brittleness and crystal grain interfacial defects of zeolite membranes, and to confine the pore size distribution of inorganic membranes in a limited range, a process method for composite membranes of A-type zeolite/SiO 2 was discribed. A silica sol was mixed with nanocrystals of zeolite 4A in a suitable proportion, then the supported membranes was prepared by dip-coating method. The composite membranes prepared in first step was treated hydrothermally again, so nanocrystal zeolite 4A formed and located in the mesopores of the membranes, and the microstructure and pore size distribution of the membrane were modified greatly. The thermal stability, mineral phase, microstructure, and pore size distribution were examined via DTA-TG, X-ray diffractometer, scanning electron microscope (SEM), and BET equipment. The structure of the composite membranes remains high stability below 800 ℃. Its average pore size in a very limited range is smaller than that in the untreated membranes in hydrothermal condition, and the peak bands of the membrane pores are 4×10 -10 m, 1.8×10 -9 m, respectively.展开更多
基金the financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)Guangdong Provincial International Joint Research Center for Energy Storage Materials(2023A0505090009)。
文摘As a prevailing cathode material of lithium-ion batteries(LIBs),LiCoO_(2)(LCO)still encounters the tricky problems of structural collapse,whose morphological engineering and cation doping are crucial for surmounting the mechanical strains and alleviating phase degradation upon cycling.Hereinafter,we propose a strategy using a zeolitic imidazolate framework(ZIF)as the self-sacrificing template to directionally prepare a series of LiNi_(0.1)Co_(0.9)O_(2)(LNCO)with tailorable electrochemical properties.The rational selection of sintering temperature imparts the superiority of the resultant products in lithium storage,during which the sample prepared at 700℃(LNCO-700)outperforms its counterparts in cyclability(156.8 mA h g^(-1)at 1 C for 200 cycles in half cells,1 C=275 mA g^(-1))and rate capability due to the expedited ion/electron transport and the strengthen mechanical robustness.The feasibility of proper Ni doping is also divulged by half/full cell tests and theoretical study,during which LNCO-700(167 mA h g^(-1)at 1 C for 100 cycles in full cells)surpasses LCO-700 in battery performance due to the mitigated phase deterioration,stabilized layered structu re,ameliorated electro nic co nductivity,a nd exalted lithium sto rage activity.This work systematically unveils tailorable electrochemical behaviors of LNCO to better direct their practical application.
基金financially supported by the National Natural Science Foundation of China (21603023)
文摘Platinum(Pt)supported on Zinc(Zn)modified silicalite-1(S-1)zeolite(denoted as Pt-Zn/S-1)was prepared by using a wetness-impregnation method and applied in the n-hexane aromatization reaction for the first time.Both Lewis and Bronsted acid sites were detected in Pt-Zn/S-1 catalyst by means of FT-IR adsorption of NH3 experiment,which were identified as mostly weak and medium ones.Besides,Pt and Zn species showed strong interaction,as revealed by the TPR(Temperature-programmed reduction)and XPS(X-ray photoelectron spectroscopy)experiments.Pt-Zn/S-1 catalyst exhibited excellent aromatization function rather than isomerization and cracking side reactions in the conversion of n-hexane.Pulse experimental study showed that 75.6%of n-hexane conversion and 76.8%of benzene selectivity were obtained over Pt0.1-Zn60/S-l catalyst at 550℃ and under atmospheric pressure.By spectroscopy tests and pulse experimental results,it was concluded that the n-hexane aromatization over Pt-Zn/S-1 catalyst follows a metal-acid bifunctional mechanism.Furthermore,with the assistance of Zn,the electron-deficient Pt species in Pt-Zn/S-1 showed good sulfur tolerance performance.
基金supported by the National Natural Science Foundation of China(51564008,41662005)Natural Science Foundation of Guangxi Province(2019GXNSFBA245083)。
文摘Zeolite X was synthesized by a two-step hydrothermal method using natural stellerite zeolite as the silicon seed,and its adsorption performance for Cd^(2+)and Ni^(2+)ions was experimentally and comprehensively investigated.The effects of p H,zeolite X dosage,contact time,and temperature on adsorption performance for Cd^(2+)and Ni^(2+)ions over were studied.The adsorption process was endothermic and spontaneous,and followed the pseudo-second-order kinetic and the Langmuir isotherm models.The maximum adsorption capacitiesfor Cd^(2+)and Ni^(2+)ions at 298 K were 173.553 and 75.897 mg.g-1,respectively.Ion exchange and precipitation were the principal mechanisms for the removal of Cd^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption.Ion exchange was the principal mechanisms for the removal of Ni^(2+)ions from aqueous solutions by zeolite X,followed by electrostatic adsorption and precipitation.The zeolite X converted from stellerite zeolite has a low n(Si/Al),abundant hydroxyl groups,and high crystallinity and purity,imparting a good adsorption performance for Cd^(2+)and Ni^(2+)ions.This study suggests that zeolite X converted from stellerite zeolite could be a useful environmentally-friendly and effective tool for the removal of Cd^(2+)and Ni^(2+)ions from aqueous solutions.
基金supported by the National Natural Science Foundation of China (51622801, 51572029)Beijing Excellent Young Scholar (2015000026833ZK11)the Beijing Natural Science Foundation (2184114)
文摘Li4Si O4 has been regarded as one of the most promising high-temperature CO2 sorbents.However,for practical applications,its CO2sorption kinetics,cycling stability and sorption properties at lower temperatures or lower CO2 concentrations have to be improved.In this contribution,four Li4Si O4 sorbents were synthesized from zeolite precursors MCM-41,MCM-48,TS-1,and ZSM-5.The CO2 uptake,cycling stability and the optimal CO2 sorption conditions were investigated.Among the samples,MCM-41-Li4Si O4 showed the best cycling stability at 650°C,with a stable reversible CO2 uptake of 29.1 wt%under 100 vol%CO2 during 20 cycles.But its sorption kinetics and CO2 uptakes at lower temperatures and lower CO2 concentrations need to be improved.We then demonstrated that the sorption kinetics can be improved by modifying the MCM-41 precursor with metals such as Al,Ti,Ca,and Na.The Na-MCM-41-Li4Si O4 sample exhibited the highest sorption rate,and reached the equilibrium sorption capacity close to the theoretical value of 36.7 wt%within 20 min.In addition,we proved that coating the MCM-41-Li4Si O4with Na2CO3and K2CO3can significantly increase the CO2uptakes at lower temperatures(e.g.550℃)and lower CO2concentrations(10–20 vol%).At 550℃ and under 20 vol%CO2,15 wt%K2CO3-MCM-41-Li4Si O4 and 10 wt%Na2CO3-MCM-41-Li4Si O4 sorbents resulted in a CO2 uptake of 32.2 wt%and 34.7 wt%,respectively,which are much higher than that of MCM-41-Li4Si O4(11.8 wt%).These two sorbents also showed good cycling stability.The promoiting mechasnim by alkali carbonate coating was discussed by a doubleshell model.
文摘Solid amine-based adsorbents were widely studied as an alternative to liquid amine for post-combustion CO_(2)capture(PCC).However,most of the amine adsorbents suffer from low thermal stability and poor cyclic regenerability at the temperature of hot flue gases.Here we present an amine loaded proton type Y zeolite(HY)where the amines namely monoethanolamine(MEA)and ethylenediamine(ED)are chemical immobilized via ionic bond to the zeolite framework to overcome the amine degradation problem.The MEA and ED of 5%,10%and 20%(mass)concentration-immobilized zeolites were characterized by X-ray diffraction,Fourier-transform infrared spectroscopy,and N_(2)-196℃ adsorption to confirm the structure integrity,amine functionalization,and surface area,respectively.The determination of the amine loading was given by C,H,N elemental analysis showing that ED has successfully grafted almost twice as many amino groups as MEA within the same solvent concentration.CO_(2)adsorption capacity and thermal stability of these samples were measured using thermogravimetric analyser.The adsorption performance was tested at the adsorption temperature of 30,60 and 90℃,respectively using pure CO_(2)while the desorption was carried out with pure N_(2)purge at the same temperature and then followed by elevated temperature at 150℃.It was found that all the amine@HY have a substantial high selectivity of CO_(2)over N_(2).The sample 20%ED@HY has the highest CO_(2)adsorption capacity of1.76 mmol·g^(-1)at 90℃ higher than the capacity on parent Na Y zeolite(1.45 mmol·g^(-1)only).The amine@HY samples presented superior performance in cyclic thermal stability in the condition of the adsorption temperature of 90℃ and the desorption temperature of 150℃.These findings will foster the design of better adsorbents for CO_(2)capture from flue gas in post-combustion power plants.
基金Funded by the Science Foundation of Hubei Province of China(2015CFB706)。
文摘Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeolite microspheres (Ca-MZS) and iron cross-linked nano-Fe3O4 modified zeolite microspheres (Fe-MZS) were prepared and compared for their adsorption performance.The effects of adsorbent dosage,solution pH,initial concentration and ion content on the removal of Cu^2+ from wastewater are investigated,and the adsorption kinetics and isotherms for the adsorbent materials were analyzed.The experimental results indicate that for the initial concentration of Cu^2+ of 30 mg/L,the adsorption is noted to be most stable.The optimal initial pH for adsorbing Cu^2+ is observed to be 5.5.At an optimal dosage of Ca-MZS of 900 mg/L,the adsorption capacity is measured to be 28.25 mg/g,along with the removal rate of 72.49%.The addition of Na+ and K+ affects the adsorption of Cu^2+.For the Na^+ and K^+ concentration of 0.2 mmol/L,the Cu^2+ removal rate by Ca-MZS drops to 11.94% and 22.12%,respectively.As compared with the adsorbents such as Natural Zeolite (NZ),Ca-MS and Fe-MZS,Ca-MZS demonstrates the best removal effect in solution,where the removal rate reaches 84.27%,with the maximum adsorption capacity of 28.09 mg/g.The Cu^2+ adsorption kinetics of Ca-MZS is observed to follow the Elovich kinetic model,with the adsorption isotherm data fitting the Freundlich isotherm model by using the non-linear method.
基金Natural Science Foundation of Anhui Province(1908085ME127)Research Foundation of the Institute of Environmentfriendly Materials and Occupational Health(Wuhu),Anhui University of Science and Technology(ALW2021YF11)。
基金The authors thank the National Natural Science Foundation of China(51502194,22133005,21973107,and 22103093)the Natural Science Foundation of Shandong(ZR2020ME024)+2 种基金the Science and Technology Commission of Shanghai Municipality(21ZR1472900)the Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province(HPK202103)for financial supportOpen access funding provided by Shanghai Jiao Tong University
文摘The intrinsically safe Zn||I_(2) battery,one of the leading candidates aiming to replace traditional Pb-acid batteries,is still seriously suffering from short shelf and cycling lifespan,due to the uncontrolled I_(3)^(−)-shuttling and dynamic parasitic reactions on Zn anodes.Considering the fact that almost all these detrimental processes terminate on the surfaces of Zn anodes,modifying Zn anodes’surface with protecting layers should be one of the most straightforward and thorough approaches to restrain these processes.Herein,a facile zeolite-based cation-exchange protecting layer is designed to comprehensively suppress the unfavored parasitic reactions on the Zn anodes.The negatively-charged cavities in the zeolite lattice provide highly accessible migration channels for Zn^(2+),while blocking anions and electrolyte from passing through.This low-cost cation-exchange protecting layer can simultaneously suppress self-discharge,anode corrosion/passivation,and Zn dendrite growth,awarding the Zn||I_(2) batteries with ultra-long cycle life(91.92%capacity retention after 5600 cycles at 2 A g^(−1)),high coulombic efficiencies(99.76%in average)and large capacity(203–196 mAh g^(−1) at 0.2 A g^(−1)).This work provides a highly affordable approach for the construction of high-performance Zn-I_(2) aqueous batteries.
文摘In this work, the zeolite-Y was ion-exchanged by introducing silver cations into the framework of microsized nano-porous sodium zeolite-Y using a liquid-phase ion exchanged method. The Ag+ion-exchanged zeolite, was then embedded into the Matrimid5218 matrix to form novel mixed matrix membranes(MMMs). The particles and MMMs were characterized by ultraviolet-visible diffuse reflectance spectroscopy(UV–vis DRS), N2adsorption–desorption isotherm, X-ray diffraction(XRD), Fourier transform infrared(FTIR) and scanning electron microscopy(SEM). Furthermore, the effects of filler content(0–20wt%) on pure and mixed gas experiments, feed pressure(2–20 bar) and operating temperature(35–75 oC)on CO2/CH4transport properties of Matrimid/Ag Y MMMs were considered. Characterization results confirmed an appropriate ion-exchange treatment of the zeolites. The SEM results confirmed the superior interfacial adhesion between polymer and zeolites, particularly in the case of Matrimid/Ag Y membranes.This is due to the proper silverous zeolite/Matrimid functional groups’ interactions. The gas permeation results showed that the CO2permeability increased about 123%, from 8.34 Barrer for pure Matrimid to18.62 Barrer for Matrimid/Ag Y(15 wt%). The CO2/CH4selectivity was improved about 66%, from 36.3 for Matrimid to 60.1 for Matrimid/Ag Y(15 wt%). The privileged gas separation performance of Matrimid/Ag Y(15 wt%) was the result of a combined effect of facilitated transport mechanism of Ag+ions as well as the intrinsic surface diffusion mechanism of Y-type zeolite. In order to survey the possibility of using the developed MMMs in industry, the CO2-induced plasticization effect and mixed gas experiment were accomplished. It was deduced that the fabricated MMMs could maintain the superior performance in actual operating conditions.
文摘2,6-Dimethylnaphthalene (2,6-DMN) is a key intermediate for polyethylene naphthalate synthesis. The selective synthesis of 2,6-DMN from naphthalene and methanol was carried out over different zeolites (HZSM-5, Hβ, HUSY and SAPO-11) modified by 0.1wt% PdO under atmospheric pressure. Among the adopted zeolites, SAPO-11 exhibits exceptional shape-selectivity and stability to synthesize 2,6-dimethylnaphthalene from methylation of naphthalene, due to the special pore structure of SAPO-11 which inosculated better with 2,6-dimethylnaphthalene than with 2,7-dimethylnaphthalene.
文摘The effects of the initial framework SiO2/Al2O3 ratio and temperature on the structural changes of NaY zeolites during hydrothermal treatments are studied. Two samples with different framework SiO2/Al2O3 ratios are subjected to hydrothermal treatment at four different temperatures. For zeolite with a lower initial SiO2/Al2O3 ratio of 4.2, mesopores are easily formed because more framework aluminum is detached. Moreover, two kinds of mesopores are produced at a higher temperature due to the interconnection of vacancies and smaller mesopores. For zeolite with a higher initial SiO2/Al2O3 ratio of 6.0, there are less mesopores formed as compared with the lower initial SiO2/Al2O3 ratio sample, but there are some macropores formed. This may be attributed to the isolation of vacancies and the different distributions of aluminum in the crystal lattice of the zeolite. The experiment data show that NaY with the SiO2/Al2O3 ratio of 6.0 retains a high relative crystallinity during the hydrothermal treatment. This proves that a high framework SiO2/Al2O3 ratio benefits the stability of zeolite.
文摘ITQ-2 zeolites were prepared by sequential alkali-swelling and ultrasonic-delamination of precursor MCM-22 and characterized by X-ray powder diffraction, scanning electron microscopy, nitrogen adsorption-desorption, ammonia temperature-programmed desorption and in-situ Fourier-transform infrared spectroscopy. The delamination induced a change in the morphology of ITQ-2 zeolites from aggregated thin platelets to scattered platelets, together with a significant increase in external specific surface area, which reached a plateau at the ultrasonic treatment time of 3 h. The catalytic cracking of n-dodecane over ITQ-2 zeolites was evaluated with ITQ-2 coated on the inside wall of a tubular reactor at 550 ℃ and 4 MPa. The sample obtained by ultrasonic treatment of 3 h (ITQ-2-3) gave the highest initial conversion of n-dodecane, whereas those of 5 h and I h gave the conversion even lower than MCM-22, which was in agreement with the trend of the ratio of strong Lewis acid to the total acid amount. Although the amount of cokes deposited on ITQ-2-3 was larger than that on MCM-22, the former deactivated slowly, suggesting that a large external specific surface area benefits the stability of zeolite coatings,
文摘Ti02 coatings on natural feather zeolite are respectively prepared by a collosol (Sol-gel) method and two powder coating methods with deionizod water or dehydrated ethanol as a dispersant. During degradation of orthomono- chlorphenol solutions by ultraviolet, the strong adsorption capability of the zeolite results in increased concentration of substrate on its surface. The Ti(h film coated on feather zeolite further enhances the photocatalytic activity. The TiO~ film on the zeolite prepared by the Sol-gel method is found more effective as a catalyst than that by two powder coating methods.
文摘Study of physisorbed and chemisorbed carbon dioxide (CO<sub>2</sub>) species was carried out on the NaX zeolite modified by cationic exchanges with bivalent cations (Ca<sup>2+</sup> and Ba<sup>2+</sup>) by temperature-programmed desorption of CO<sub>2</sub> (CO<sub>2</sub>-TPD). Others results were obtained by infrared to complete the study. The results of this research showed, in the physisorption region (213 - 473 K), that the cationic exchanges on NaX zeolite with bivalent cations increase slightly the interactions of CO<sub>2</sub> molecule with adsorbents and/or cationic site. Indeed, the desorption energies of physisorbed CO<sub>2</sub> obtained on the reference zeolite NaX (13.5 kJ·mol<sup>-1</sup>) are lower than that of exchanged zeolites E-CaX and E-BaX (15.77 and 15.17 kJ·mol<sup>-1</sup> respectively). In the chemisorbed CO<sub>2</sub> region (573 - 873 K), the desorption energies related to desorbed species (bidentate carbonates: CO<sub>3</sub>2-</sup>) on the exchanged zeolites E-CaX and E-BaX are about 81 kJ·mol<sup>-1</sup>, higher than the desorbed species (bicarbonates: HCO<sub>3</sub>2-</sup>) on the reference R-NaX (62 kJ·mol<sup>-1</sup>). In addition, the exchanged E-BaX zeolite develops the secondary adsorption sites corresponding to bicarbonates species with desorption energies of 35 kJ·mol<sup>-1</sup> lower to desorption energies of bicarbonates noted on the reference zeolite NaX.
文摘To deal with the brittleness and crystal grain interfacial defects of zeolite membranes, and to confine the pore size distribution of inorganic membranes in a limited range, a process method for composite membranes of A-type zeolite/SiO 2 was discribed. A silica sol was mixed with nanocrystals of zeolite 4A in a suitable proportion, then the supported membranes was prepared by dip-coating method. The composite membranes prepared in first step was treated hydrothermally again, so nanocrystal zeolite 4A formed and located in the mesopores of the membranes, and the microstructure and pore size distribution of the membrane were modified greatly. The thermal stability, mineral phase, microstructure, and pore size distribution were examined via DTA-TG, X-ray diffractometer, scanning electron microscope (SEM), and BET equipment. The structure of the composite membranes remains high stability below 800 ℃. Its average pore size in a very limited range is smaller than that in the untreated membranes in hydrothermal condition, and the peak bands of the membrane pores are 4×10 -10 m, 1.8×10 -9 m, respectively.