The original strain HY-7 was isolated from the bauxite mine drainage(BMD) taken from a reservoir in Sanmenxia Mine,Henan Province,China.The optimum temperature and pH for the growth of strain HY-7 were 30 ℃ and 7.0...The original strain HY-7 was isolated from the bauxite mine drainage(BMD) taken from a reservoir in Sanmenxia Mine,Henan Province,China.The optimum temperature and pH for the growth of strain HY-7 were 30 ℃ and 7.0,respectively.The optimum UV radiating time was 20 s and the positive mutation rate was 23.0%.The growth curves show that strain HY-7 needs144 h to reach the stationary phase after its mutagenesis,which is 24 h earlier than that of the original strain.Sequence homology analysis indicated that this community consisted of mainly two branches:one sharing high homology with Paenibacillus stellifer and the other sharing high homology with Sporolactobacillus laevolacticus.The experimental results showed that the TiO2 grade of mtile concentrate increased from 78.21%to 91.80%and the recovery of TiO2 reached 95.24%after 7 d of bioleaching.The bio-desilication process can not only effectively improve the TiO2 grade of rutile concentrate but also meet the requirements of environmental protection.展开更多
The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivativ...The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivative spectra. The results show that the desilication ratio in the solution prepared by the addition of sodium silicate(solution-SS) is much greater than that in the solution by the addition of green liquor(solution-GL), and low alumina concentration in the sodium aluminate solutions facilitates the desilication process. It is also shown that alumino-silicate anions in the solution-GL, and Q^3 polymeric silicate anions in solution-SS are predominant, respectively. In addition, increasing the concentration of silica favors respectively the formation of the alumino-silicate or the Q^3 silicate anions in the solution-GL or the solution-SS. Therefore, it can be inferred that the low desilication ratio in the silicate-bearing aluminate solution is mainly attributed to the existence of alumino-silicate anions.展开更多
Biological desilication process is an effective way to remove silicate from rutile so that high purity rutile could be obtained. However, little is known about the molecular mechanism of this process. In this work, a ...Biological desilication process is an effective way to remove silicate from rutile so that high purity rutile could be obtained. However, little is known about the molecular mechanism of this process. In this work, a newly developed rutile bio-desilication reactor was applied to enrich rutile from rough rutile concentrate obtained from Nanzhao rutile mine and a comprehensive high through-put functional gene array(Geo Chip 4.0) was used to analyze the functional gene diversity, structure and metabolic potential of microbial communities in the biological desilication reactor. The results show that TiO2 grade of the rutile concentrate could increase from 78.21% to above 90% and the recovery rate could reach to 96% or more in 8-12 d. The results also show that almost all the key functional genes involved in the geochemical cycling process, totally 4324 and 4983 functional microorganism genes, are detected in the liquid and ore surface, respectively. There are totally 712 and 831 functional genes involved in nitrogen cycling for liquid and ore surface samples, respectively. The relative abundance of functional genes involved in the phosphorus and sulfur cycling is higher in the ore surface than liquid. These results indicate that nitrogen, phosphorus and sulfur cycling are also present in the desiliconization process of rutile. Acetogenesis genes are detected in the liquid and ore surface, which indicates that the desiliconizing process mainly depends on the function of acetic acid and other organic acids. Four silicon transporting genes are also detected in the sample, which proves that the bacteria have the potential to transfer silicon in the molecule level. It is shown that bio-desilication is an effective and environmental-friendly way for enrichment of rough rutile concentrate and presents an overview of functional diversity and structure of desilication microbial communities, which also provides insights into our understanding of metabolic potential in biological desilication reactor ecosystems.展开更多
To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using s...To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.展开更多
The only occurrence of Lower Triassic silicic volcanic rocks within the South China Block is in the Qinzhou Bay area of Guangxi Province.LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Beisi and Banba ...The only occurrence of Lower Triassic silicic volcanic rocks within the South China Block is in the Qinzhou Bay area of Guangxi Province.LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Beisi and Banba formations formed between 248.8±1.6 and 246.5±1.3 Ma,coeval with peraluminous granites of the Qinzhou Bay Granitic Complex.The studied rhyolites and dacites are characterized by high SiO_(2),K_(2)O,and Al_(2)O_(3),and low MgO,CaO,and P_(2)O_(5) contents and are classified as high-K calc-alkaline S-type rocks,with A/CNK=0.98-1.19.The volcanic rocks are depleted in high field strength elements,e.g.,Nb,Ta,Ti,and P,and enriched in large ion lithophile elements,e.g.,Rb,K,Sr,and Ba.Although the analyzed volcanic rocks have extremely enriched zircon Hf isotopic compositions(ε_(Hf)(t)=-29.1 to-6.9),source discrimination indicators and high calculated Ti-in-zircon temperatures(798-835℃)reveal that magma derived from enriched lithospheric mantle not only provided a heat source for anatectic melting of the metasedimentary protoliths but was also an endmember component of the S-type silicic magma.The studied early Triassic volcanics are inferred to have formed immediately before closure of the Paleo-Tethys Ocean in this region,as the associated subduction would have generated an extensional setting in which the mantle-derived upwelling and volcanic activity occurred.展开更多
The reconstruction of paleo-elevation serves a dual purpose to enhance our comprehension of geodynamic processes affecting terrestrial landforms and to contribute significantly to the interpretation of atmospheric cir...The reconstruction of paleo-elevation serves a dual purpose to enhance our comprehension of geodynamic processes affecting terrestrial landforms and to contribute significantly to the interpretation of atmospheric circulation and biodiversity.The oxygen(δ~(18)O_w)and deuterium(δD_w)isotopes in atmospheric precipitation are systematically depleted with the increase of altitude,which are typical and widely applicated paleo-altimeters.The utilization of hydrogen isotope of hydrous silicate minerals within the shear zone system,volcanic glass,and plant leaf wax alkanes offers valuable insights for addressing evaporation and diagenesis.In this paper,we review the principle,application conditions,and influencing factors of the hydrogen isotope paleo-altimeter.In addition,we discuss the feasibility of utilizing this technique for quantitatively estimating the paleo-elevation of the southeastern Tibetan Plateau,where multiple shear zones extend over hundred kilometers parallel to the topographic gradient.展开更多
Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.How...Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.However,compared to organic binders(such as resin binders),inorganic binders exhibit lower bonding strength and are more sensitive to environmental humidity.This sensitivity poses challenges,particularly in the reclamation of used sand,thus limiting their broader application.In this paper,the research and application status of inorganic binders(mainly silicate inorganic binders)and their curing methods are summarized.In addition,the research and application of phosphate inorganic binders and 3D printing inorganic binders that are being developed are introduced.Meanwhile,a detailed comparative analysis is conducted on the challenging issue of“reclamation for used sand”in the application of inorganic binders.Finally,the development direction of inorganic binders is clarified.展开更多
The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified ...The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.展开更多
Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhi...Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.展开更多
Currently a technique widely used for gold extraction is mercury by amalgamation technique, the tailing produced pollutes water of all kinds, so it is necessary to develop a form of selective mitigation, for which it ...Currently a technique widely used for gold extraction is mercury by amalgamation technique, the tailing produced pollutes water of all kinds, so it is necessary to develop a form of selective mitigation, for which it is necessary to use complexing agents based on calixarene functionalized with mercury sequestering agents. These are immobilized by adding supports based on natural silica to form polymers and make them insoluble in all types of solvents, so that they can be used as an extractor and at the same time regenerate to their original properties for continuous reuse.展开更多
In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy ef...In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.展开更多
The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tec...The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy (SEM) was used to characterize the AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration and the inhibition efficiency increases with the concentration of Na<sub>2</sub>SiO<sub>3</sub>. The corrosion inhibition mechanism involves the formation of a protective film over the alloy surface by adsorption of aluminosilicate anions from solution, as has also been suggested by others in literature.展开更多
The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosu...The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity.展开更多
Engineering geological disasters such as rockburst have always been a critical factor affecting the safety of coal mine production.Thus,residual stress is considered a feasible method to explain these geomechanical ph...Engineering geological disasters such as rockburst have always been a critical factor affecting the safety of coal mine production.Thus,residual stress is considered a feasible method to explain these geomechanical phenomena.In this study,electron backscatter diffraction(EBSD)and optical microscopy were used to characterize the rock microcosm.A measuring area that met the requirements of X-ray diffraction(XRD)residual stress measurement was determined to account for the mechanism of rock residual stress.Then,the residual stress of a siliceous slate-containing quartz vein was measured and calculated using the sin^(2) ϕ method equipped with an X-ray diffractometer.Analysis of microscopic test results showed homogeneous areas with small particles within the millimeter range,meeting the requirements of XRD stress measurement statistics.Quartz was determined as the calibration mineral for slate samples containing quartz veins.The diffraction patterns of the(324)crystal plane were obtained under different ϕ and φ.The deviation direction of the diffraction peaks was consistent,indicating that the sample tested had residual stress.In addition,the principal residual stress within the quartz vein measured by XRD was compressive,ranging from 10 to 33 MPa.The maximum principal stress was parallel to the vein trend,whereas the minimum principal stress was perpendicular to the vein trend.Furthermore,the content of the low-angle boundary and twin boundary in the quartz veins was relatively high,which enhances the resistance of the rock mass to deformation and promotes the easy formation of strain concentrations,thereby resulting in residual stress.The proposed method for measuring residual stress can serve as a reference for subsequent observation and related research on residual stress in different types of rocks.展开更多
In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H),at the same time to make up for the poor early mechanical strength of magnesium silicate hydrate...In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H),at the same time to make up for the poor early mechanical strength of magnesium silicate hydrates (M-S-H),we present the features and advantages of C-S-H and M-S-H and a comprehensive review of the progress on CaO-MgO-SiO_(2)-H_(2)O.Moreover,we systematically describe natural calcium and magnesium silicate minerals and thermodynamic properties of CaO-MgO-SiO_(2)-H_(2)O.The effect of magnesium on C-S-H and calcium on M-S-H is summarized deeply;the formation and structural feature of CaO-MgO-SiO_(2)-H_(2)O is also explained in detail.Finally,the development of calcium and magnesium silicate hydrates in the future is pointed out,and the further research is discussed and estimated.展开更多
Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plicati...Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plications.The present study advocates nano-calcium carbonate(NCC)material,a relatively unexplored nanomaterial additive,for stabilization of low-plasticity fine-grained soil having moderate organic content.The plasticity index,compaction,unconfined compressive strength(UCS),compressibility and permeability characteristics of the 0.2%,0.4%,0.6%and 0.8%NCC-treated soil,and untreated soil(as control),were determined,including investigations of the effect of up to 90-d curing on the UCS and permeability properties.In terms of UCS improvement,0.4%NCC addition was identified as the optimum dosage,mobilizing a UCS at 90-d curing of almost twice that for the untreated soil.For treated soil,particle aggregation arising from NCC addition initially produced an increase in the permeability coef-ficient,but its magnitude decreased for increased curing owing to calcium silicate hydrate(CSH)gel formation,although still remaining higher compared to the untreated soil for all dosages and curing periods investigated.Compression index decreased for all NCC-treated soil investigated.SEM micro-graphs indicated the presence of gel patches along with particle aggregation.X-ray diffraction(XRD)results showed the presence of hydration products,such as CSH.Significant increases in UCS are initially attributed to void filling and then because of CSH gel formation with increased curing.展开更多
Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood ...Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood modification process,and the properties of modified wood were studied.Poplar wood was modified with sodium silicate by vacuum-pressure impregnation.After screening using single-factor experiments,an orthogonal experiment was carried out with solution concentration,impregnation time,impregnation pressure,and the cycle times as experimental factors.The modified poplar with the best properties was selected by fuzzy mathematics and characterized by SEM,FT-IR,XRD and TG.The results showed that some lignin and hemicellulose were removed from the wood due to the alkaline action of sodium silicate,and the orderly crystal area of poplar became disorderly,resulting in the reduction of crystallinity of the modified poplar wood.FT-IR analysis showed that sodium silicate was hydrolyzed to form polysilicic acid in wood,and structural analysis revealed the formation of Si-O-Si and Si-O-C,indicating that sodium silicate reacted with fibers on the wood cell wall.TG-DTG curves showed that the final residual mass of modified poplar wood increased from 25%to 67%,and the temperature of the maximum loss rate decreased from 343℃ to 276℃.The heat release and smoke release of modified poplar wood decreased obviously.This kind of material with high strength and fire resistance can be used in the outdoor building and indoor furniture.展开更多
This study aims to investigate the behavior of alkali activated mortar,which is made of naturally available magnesium silicate as source material.For magnesium silicate,ultrafine natural steatite powder(UFNSP)is used ...This study aims to investigate the behavior of alkali activated mortar,which is made of naturally available magnesium silicate as source material.For magnesium silicate,ultrafine natural steatite powder(UFNSP)is used as the primary source of binder,and the activation is initiated through the alkali liquid which is proportioned in various combinations of silicate to hydroxide ratio(Na_(2)SiO_(3)/Na OH)ratio,and this ratio in this study varies from 1 to 3.The UFNSP is calcined at two difierent temperatures,700 and 1000℃.The mortar mix is proportioned as 1:3 between powder and the fine aggregate,and the mortar is prepared with hydroxide molarity(M)of 10 M.The mortar is cured for 48 hours at 60℃and the compressive strength was studied.All the mix were studied for its microstructural behavior along with compressive strength.The mix proportion of the mortar,and the results obtained through microstructural characterization were combinedly formed as input for artificial neural network(ANN)predictive modelling.The model is designed to predict the compressive strength,which is trained through Bayesian regularization algorithm with varying hidden neurons of 7 to 10.This experimental and predictive study shows that the strength is influenced by both Na_(2)SiO_(3)/Na OH ratio and calcination process.And the ANN is influenced by mainly calcination temperature and uncorrelation occurs in selected samples of 1000℃calcined UFNSP mix.展开更多
The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was develope...The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was developed by steam leaching,which can reduce the water consumption of reclamation and improve the removal effect of sodium silicate bond film.Firstly,the leaching effect of the sodium silicate sands after 20/200/400/600/800/1,000°C heat preservation treatment was simulated.Furthermore,the influence of the leaching time on the removal effect of the sodium silicate bond film was studied.Finally,the casting properties of the reclaimed sands after the leaching reclamation treatment were tested.The results show for simulated used sands after 30 min of steam leaching,the removal ratio of the alkali exceeds 84.1%,the removal ratio of silicate is 86.2%,and the removal ratio of carbonate is 93.6%.The removal rate of alkali,silicate and carbonate is relatively low in the leaching time of 30-50 min.Considering the reclamation effect and cost,the leaching time is controlled in 30 min.Water consumption is only 60%of the mass of used sands for 30 min steam leaching,while it is 200%for wet reclamation.Morphological analysis shows that most of the hazardous substances in the used sands are removed in 30 min steam leaching,and the reclaimed sands surface after steam leaching in 50 min is as smooth as new sands.After 30 min of steam leaching,the alkali removal effect of the factory used sands can reach 81.5%,the water consumption by the steam leaching reclamation is 58%of the mass of the used sand,which is similar to the result of simulated used sands.The performance of reclaimed sands obtained after 30 min steam leaching is better than that of new sands when the amount of sodium silicate added is 6%of the mass of the reclaimed sands and the CO_(2) blowing time is 15 s:the 24 h ultimate compressive strength of reclaimed sands is 5.6 MPa(equated with new sands),and the collapsibility compressive strength is 5.2 MPa,which is lower than the collapsibility compressive strength of new sands(7.7 MPa).This indicates that the reclamation of CO_(2) sodium silicate used sands by steam leaching is a feasible method.展开更多
The introduction of metals into vitreous matrices is the origin of various interesting phenomena;in particular,the presence of copper ions in glass has been the subject of considerable research because of its numerous...The introduction of metals into vitreous matrices is the origin of various interesting phenomena;in particular,the presence of copper ions in glass has been the subject of considerable research because of its numerous applications.The ion-exchange process is primarily used to introduce copper ions into glass matrices.The thermoluminescence(TL)of silicate glass was studied to evaluate its potential as gamma-sensitive material for dosimetric applications;the effect of copper doping on the thermoluminescent sensitivity was investigated using the Cu-Na ion-exchange technique for different concentrations and doping conditions,over a wide dose range of 10 mGy to 100 kGy.The results showed that Cu doping significantly improved the sensitivity of the glasses to gamma radiation.After the ion-exchange,two peaks appeared in the glow curves at approximately 175 and 230°C,respectively,which possibly originated from the Cu^(+) centers,along with a weak TL peak at around 320℃.We also attempted to explain the origin of the observed thermoluminescence by exploiting the Electron paramagnetic resonance(EPR)spectra.The results clearly show quenching of the TL emission with increasing copper concentrations.The present work indicates that the thermoluminescence response of these glasses to gamma rays can be reasonably measured in the range of 0.001-100 kGy.This study also facilitates the understanding of the basic TL mechanism in this glass system.展开更多
基金Project(2011-622-40)supported by the Mineral Exploration Foundation of Henan Province,ChinaProject(51104189)supported by the National Natural Science Foundation of ChinaProject(2013M531814)supported by the 53rd China Postdoctoral Science Foundation
文摘The original strain HY-7 was isolated from the bauxite mine drainage(BMD) taken from a reservoir in Sanmenxia Mine,Henan Province,China.The optimum temperature and pH for the growth of strain HY-7 were 30 ℃ and 7.0,respectively.The optimum UV radiating time was 20 s and the positive mutation rate was 23.0%.The growth curves show that strain HY-7 needs144 h to reach the stationary phase after its mutagenesis,which is 24 h earlier than that of the original strain.Sequence homology analysis indicated that this community consisted of mainly two branches:one sharing high homology with Paenibacillus stellifer and the other sharing high homology with Sporolactobacillus laevolacticus.The experimental results showed that the TiO2 grade of mtile concentrate increased from 78.21%to 91.80%and the recovery of TiO2 reached 95.24%after 7 d of bioleaching.The bio-desilication process can not only effectively improve the TiO2 grade of rutile concentrate but also meet the requirements of environmental protection.
基金Project(51274242)supported by the National Natural Science Foundation of ChinaProject(2015CX001)supported by the Innovation-driven Plan in Central South University,China
文摘The structural changes of silicate anions in the desilication process with the addition of calcium hydrate alumino-carbonate were studied by measuring Raman spectra, infrared spectra and corresponding second derivative spectra. The results show that the desilication ratio in the solution prepared by the addition of sodium silicate(solution-SS) is much greater than that in the solution by the addition of green liquor(solution-GL), and low alumina concentration in the sodium aluminate solutions facilitates the desilication process. It is also shown that alumino-silicate anions in the solution-GL, and Q^3 polymeric silicate anions in solution-SS are predominant, respectively. In addition, increasing the concentration of silica favors respectively the formation of the alumino-silicate or the Q^3 silicate anions in the solution-GL or the solution-SS. Therefore, it can be inferred that the low desilication ratio in the silicate-bearing aluminate solution is mainly attributed to the existence of alumino-silicate anions.
基金Project(2011-622-40) supported by the Mineral Exploration Foundation of Henan Province,ChinaProject(51104189) supported by the National Natural Science Foundation of ChinaProject(2013M531814) supported by the Postdoctoral Science Foundation of China
文摘Biological desilication process is an effective way to remove silicate from rutile so that high purity rutile could be obtained. However, little is known about the molecular mechanism of this process. In this work, a newly developed rutile bio-desilication reactor was applied to enrich rutile from rough rutile concentrate obtained from Nanzhao rutile mine and a comprehensive high through-put functional gene array(Geo Chip 4.0) was used to analyze the functional gene diversity, structure and metabolic potential of microbial communities in the biological desilication reactor. The results show that TiO2 grade of the rutile concentrate could increase from 78.21% to above 90% and the recovery rate could reach to 96% or more in 8-12 d. The results also show that almost all the key functional genes involved in the geochemical cycling process, totally 4324 and 4983 functional microorganism genes, are detected in the liquid and ore surface, respectively. There are totally 712 and 831 functional genes involved in nitrogen cycling for liquid and ore surface samples, respectively. The relative abundance of functional genes involved in the phosphorus and sulfur cycling is higher in the ore surface than liquid. These results indicate that nitrogen, phosphorus and sulfur cycling are also present in the desiliconization process of rutile. Acetogenesis genes are detected in the liquid and ore surface, which indicates that the desiliconizing process mainly depends on the function of acetic acid and other organic acids. Four silicon transporting genes are also detected in the sample, which proves that the bacteria have the potential to transfer silicon in the molecule level. It is shown that bio-desilication is an effective and environmental-friendly way for enrichment of rough rutile concentrate and presents an overview of functional diversity and structure of desilication microbial communities, which also provides insights into our understanding of metabolic potential in biological desilication reactor ecosystems.
基金financial support from the National Natural Science Foundation of China(No.52074364)。
文摘To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.
基金supported by the Guangxi Natural Science Foundation Program(Grant Nos.2021GXNSFAA220077,2021GXNSFBA220063)the Natural Science Foundation of China(Grant No.42073031)。
文摘The only occurrence of Lower Triassic silicic volcanic rocks within the South China Block is in the Qinzhou Bay area of Guangxi Province.LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Beisi and Banba formations formed between 248.8±1.6 and 246.5±1.3 Ma,coeval with peraluminous granites of the Qinzhou Bay Granitic Complex.The studied rhyolites and dacites are characterized by high SiO_(2),K_(2)O,and Al_(2)O_(3),and low MgO,CaO,and P_(2)O_(5) contents and are classified as high-K calc-alkaline S-type rocks,with A/CNK=0.98-1.19.The volcanic rocks are depleted in high field strength elements,e.g.,Nb,Ta,Ti,and P,and enriched in large ion lithophile elements,e.g.,Rb,K,Sr,and Ba.Although the analyzed volcanic rocks have extremely enriched zircon Hf isotopic compositions(ε_(Hf)(t)=-29.1 to-6.9),source discrimination indicators and high calculated Ti-in-zircon temperatures(798-835℃)reveal that magma derived from enriched lithospheric mantle not only provided a heat source for anatectic melting of the metasedimentary protoliths but was also an endmember component of the S-type silicic magma.The studied early Triassic volcanics are inferred to have formed immediately before closure of the Paleo-Tethys Ocean in this region,as the associated subduction would have generated an extensional setting in which the mantle-derived upwelling and volcanic activity occurred.
基金supported by the National Key Research and Development program of China(Grant No.2021YFC3000604)National Natural Science Foundation of China(Grant Nos.42030305,42272257)sponsored by State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration(Grant No.LED2022B04)。
文摘The reconstruction of paleo-elevation serves a dual purpose to enhance our comprehension of geodynamic processes affecting terrestrial landforms and to contribute significantly to the interpretation of atmospheric circulation and biodiversity.The oxygen(δ~(18)O_w)and deuterium(δD_w)isotopes in atmospheric precipitation are systematically depleted with the increase of altitude,which are typical and widely applicated paleo-altimeters.The utilization of hydrogen isotope of hydrous silicate minerals within the shear zone system,volcanic glass,and plant leaf wax alkanes offers valuable insights for addressing evaporation and diagenesis.In this paper,we review the principle,application conditions,and influencing factors of the hydrogen isotope paleo-altimeter.In addition,we discuss the feasibility of utilizing this technique for quantitatively estimating the paleo-elevation of the southeastern Tibetan Plateau,where multiple shear zones extend over hundred kilometers parallel to the topographic gradient.
基金supported by the National Natural Science Foundation of China(Nos.52275334,52205361,51075163,and 50575085).
文摘Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.However,compared to organic binders(such as resin binders),inorganic binders exhibit lower bonding strength and are more sensitive to environmental humidity.This sensitivity poses challenges,particularly in the reclamation of used sand,thus limiting their broader application.In this paper,the research and application status of inorganic binders(mainly silicate inorganic binders)and their curing methods are summarized.In addition,the research and application of phosphate inorganic binders and 3D printing inorganic binders that are being developed are introduced.Meanwhile,a detailed comparative analysis is conducted on the challenging issue of“reclamation for used sand”in the application of inorganic binders.Finally,the development direction of inorganic binders is clarified.
基金Funded by Hubei Technology Innovation Key Program (No.2018AAA004)。
文摘The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S.
基金the financial support from the National Key Research and Development Program of China(No.2018YFC1903403)Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Inhibitors are important for flotation separation of quartz and feldspar.In this study,a novel combined inhibitor was used to separate quartz and feldspar in near-neutral pulp.Selective inhibition of the combined inhibitor was assessed by micro-flotation experiments.And a series of detection methods were used to detect differences in the surface properties of feldspars and quartz after flotation reagents and put forward the synergistic strengthening mechanism.The outcomes were pointed out that pre-mixing combined inhibitors were more effective than the addition of Ca^(2+)and SS in sequence under the optimal proportion of 1:5.A concentrate from artificial mixed minerals that was characterized by a high quartz grade and a high recovery was acquired,and was found to be 90.70wt% and 83.70%,respectively.It was demonstrated that the combined inhibitor selectively prevented the action of the collector and feldspar from Fourier-transform infrared(FT-IR)and adsorption capacity tests.The results of X-ray photoelectron spectroscopy(XPS)indicated that Ca^(2+)directly interacts with the surface of quartz to increase the adsorption of collectors.In contrast,the chemistry property of Al on the feldspar surface was altered by combined inhibitor due to Na^(+)and Ca^(2+)taking the place of K^(+),resulting in the composite inhibitor forms a hydrophilic structure,which prevents the adsorption of the collector on the surface of feldspar by interacting with the Al active site.The combination of Ca^(2+)and SS synergically strengthens the difference of collecting property between quartz and feldspar by collector,thus achieving the effect of efficient separation.A new strategy for flotation to separate quartz from feldspar in near-neutral pulp was provided.
文摘Currently a technique widely used for gold extraction is mercury by amalgamation technique, the tailing produced pollutes water of all kinds, so it is necessary to develop a form of selective mitigation, for which it is necessary to use complexing agents based on calixarene functionalized with mercury sequestering agents. These are immobilized by adding supports based on natural silica to form polymers and make them insoluble in all types of solvents, so that they can be used as an extractor and at the same time regenerate to their original properties for continuous reuse.
文摘In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.
文摘The influence of sodium silicate on the corrosion behaviour of aluminium alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) techniques. Scanning electron microscopy (SEM) was used to characterize the AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration and the inhibition efficiency increases with the concentration of Na<sub>2</sub>SiO<sub>3</sub>. The corrosion inhibition mechanism involves the formation of a protective film over the alloy surface by adsorption of aluminosilicate anions from solution, as has also been suggested by others in literature.
基金supported by the Youth Science Foundation of China(No.52004333)the Key Laboratory of Hunan Province for Clean and Efficiency Utilization of Strategic Calcium-containing Mineral Resources(No.2018TP1002).
文摘The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity.
基金funded by the National Natural Science Foundation of China(Nos.51874014,52004015,and 52311530070)the fellowship of China National Postdoctoral Program for Innovative Talents(No.BX2021033)+2 种基金the fellowship of China Postdoctoral Science Foundation(No.2021M700389)the Fundamental Research Funds for the Central Universities of China(Nos.FRF-IDRY-20-003 and QNXM20210001)State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology,China(No.SICGM202108)。
文摘Engineering geological disasters such as rockburst have always been a critical factor affecting the safety of coal mine production.Thus,residual stress is considered a feasible method to explain these geomechanical phenomena.In this study,electron backscatter diffraction(EBSD)and optical microscopy were used to characterize the rock microcosm.A measuring area that met the requirements of X-ray diffraction(XRD)residual stress measurement was determined to account for the mechanism of rock residual stress.Then,the residual stress of a siliceous slate-containing quartz vein was measured and calculated using the sin^(2) ϕ method equipped with an X-ray diffractometer.Analysis of microscopic test results showed homogeneous areas with small particles within the millimeter range,meeting the requirements of XRD stress measurement statistics.Quartz was determined as the calibration mineral for slate samples containing quartz veins.The diffraction patterns of the(324)crystal plane were obtained under different ϕ and φ.The deviation direction of the diffraction peaks was consistent,indicating that the sample tested had residual stress.In addition,the principal residual stress within the quartz vein measured by XRD was compressive,ranging from 10 to 33 MPa.The maximum principal stress was parallel to the vein trend,whereas the minimum principal stress was perpendicular to the vein trend.Furthermore,the content of the low-angle boundary and twin boundary in the quartz veins was relatively high,which enhances the resistance of the rock mass to deformation and promotes the easy formation of strain concentrations,thereby resulting in residual stress.The proposed method for measuring residual stress can serve as a reference for subsequent observation and related research on residual stress in different types of rocks.
基金Funded by Natural Science Basic Research Plan in Shaanxi Province of China (Nos.2021JQ-500, 2021GY-203, 2023-JCYB-096)Shaanxi Provincial Education Department of Key Scientific Research Plan (No.20JS079)Shaanxi Provincial Education Department of Normal Scientific Research Plan (No.20JK0727)。
文摘In order to expand the advantages of strong durability and high compressive strength of calcium silicate hydrates(C-S-H),at the same time to make up for the poor early mechanical strength of magnesium silicate hydrates (M-S-H),we present the features and advantages of C-S-H and M-S-H and a comprehensive review of the progress on CaO-MgO-SiO_(2)-H_(2)O.Moreover,we systematically describe natural calcium and magnesium silicate minerals and thermodynamic properties of CaO-MgO-SiO_(2)-H_(2)O.The effect of magnesium on C-S-H and calcium on M-S-H is summarized deeply;the formation and structural feature of CaO-MgO-SiO_(2)-H_(2)O is also explained in detail.Finally,the development of calcium and magnesium silicate hydrates in the future is pointed out,and the further research is discussed and estimated.
文摘Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plications.The present study advocates nano-calcium carbonate(NCC)material,a relatively unexplored nanomaterial additive,for stabilization of low-plasticity fine-grained soil having moderate organic content.The plasticity index,compaction,unconfined compressive strength(UCS),compressibility and permeability characteristics of the 0.2%,0.4%,0.6%and 0.8%NCC-treated soil,and untreated soil(as control),were determined,including investigations of the effect of up to 90-d curing on the UCS and permeability properties.In terms of UCS improvement,0.4%NCC addition was identified as the optimum dosage,mobilizing a UCS at 90-d curing of almost twice that for the untreated soil.For treated soil,particle aggregation arising from NCC addition initially produced an increase in the permeability coef-ficient,but its magnitude decreased for increased curing owing to calcium silicate hydrate(CSH)gel formation,although still remaining higher compared to the untreated soil for all dosages and curing periods investigated.Compression index decreased for all NCC-treated soil investigated.SEM micro-graphs indicated the presence of gel patches along with particle aggregation.X-ray diffraction(XRD)results showed the presence of hydration products,such as CSH.Significant increases in UCS are initially attributed to void filling and then because of CSH gel formation with increased curing.
基金This work was financially supported by National Natural Science Foundation of China(32201485)Natural Science Foundation of Hunan Province,China(2022JJ40863)+1 种基金Scientific Research Project of Hunan Provincial Education Department,China(21B0238)The Science and Technology Innovation Program of Hunan Province(2021RC4062).
文摘Sodium silicate modification can improve the overall performance of wood.The modification process has a great influence on the properties of modified wood.In this study,a new method was introduced to analyze the wood modification process,and the properties of modified wood were studied.Poplar wood was modified with sodium silicate by vacuum-pressure impregnation.After screening using single-factor experiments,an orthogonal experiment was carried out with solution concentration,impregnation time,impregnation pressure,and the cycle times as experimental factors.The modified poplar with the best properties was selected by fuzzy mathematics and characterized by SEM,FT-IR,XRD and TG.The results showed that some lignin and hemicellulose were removed from the wood due to the alkaline action of sodium silicate,and the orderly crystal area of poplar became disorderly,resulting in the reduction of crystallinity of the modified poplar wood.FT-IR analysis showed that sodium silicate was hydrolyzed to form polysilicic acid in wood,and structural analysis revealed the formation of Si-O-Si and Si-O-C,indicating that sodium silicate reacted with fibers on the wood cell wall.TG-DTG curves showed that the final residual mass of modified poplar wood increased from 25%to 67%,and the temperature of the maximum loss rate decreased from 343℃ to 276℃.The heat release and smoke release of modified poplar wood decreased obviously.This kind of material with high strength and fire resistance can be used in the outdoor building and indoor furniture.
文摘This study aims to investigate the behavior of alkali activated mortar,which is made of naturally available magnesium silicate as source material.For magnesium silicate,ultrafine natural steatite powder(UFNSP)is used as the primary source of binder,and the activation is initiated through the alkali liquid which is proportioned in various combinations of silicate to hydroxide ratio(Na_(2)SiO_(3)/Na OH)ratio,and this ratio in this study varies from 1 to 3.The UFNSP is calcined at two difierent temperatures,700 and 1000℃.The mortar mix is proportioned as 1:3 between powder and the fine aggregate,and the mortar is prepared with hydroxide molarity(M)of 10 M.The mortar is cured for 48 hours at 60℃and the compressive strength was studied.All the mix were studied for its microstructural behavior along with compressive strength.The mix proportion of the mortar,and the results obtained through microstructural characterization were combinedly formed as input for artificial neural network(ANN)predictive modelling.The model is designed to predict the compressive strength,which is trained through Bayesian regularization algorithm with varying hidden neurons of 7 to 10.This experimental and predictive study shows that the strength is influenced by both Na_(2)SiO_(3)/Na OH ratio and calcination process.And the ANN is influenced by mainly calcination temperature and uncorrelation occurs in selected samples of 1000℃calcined UFNSP mix.
基金This work was financially supported by the State Key Laboratory of New Textile Materials and Advanced Processing Technologies(No.FZ2021014)the Wuhan Science and Technology Bureau Application Foundation Frontier Project(2022023988065216)+2 种基金the National Natural Science Foundation of China(J2124010,51405348,51575405)the Educational Commission of Hubei Province of China(D20171604)the Hubei Provincial Natural Science Foundation of China(2018CFB673).
文摘The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was developed by steam leaching,which can reduce the water consumption of reclamation and improve the removal effect of sodium silicate bond film.Firstly,the leaching effect of the sodium silicate sands after 20/200/400/600/800/1,000°C heat preservation treatment was simulated.Furthermore,the influence of the leaching time on the removal effect of the sodium silicate bond film was studied.Finally,the casting properties of the reclaimed sands after the leaching reclamation treatment were tested.The results show for simulated used sands after 30 min of steam leaching,the removal ratio of the alkali exceeds 84.1%,the removal ratio of silicate is 86.2%,and the removal ratio of carbonate is 93.6%.The removal rate of alkali,silicate and carbonate is relatively low in the leaching time of 30-50 min.Considering the reclamation effect and cost,the leaching time is controlled in 30 min.Water consumption is only 60%of the mass of used sands for 30 min steam leaching,while it is 200%for wet reclamation.Morphological analysis shows that most of the hazardous substances in the used sands are removed in 30 min steam leaching,and the reclaimed sands surface after steam leaching in 50 min is as smooth as new sands.After 30 min of steam leaching,the alkali removal effect of the factory used sands can reach 81.5%,the water consumption by the steam leaching reclamation is 58%of the mass of the used sand,which is similar to the result of simulated used sands.The performance of reclaimed sands obtained after 30 min steam leaching is better than that of new sands when the amount of sodium silicate added is 6%of the mass of the reclaimed sands and the CO_(2) blowing time is 15 s:the 24 h ultimate compressive strength of reclaimed sands is 5.6 MPa(equated with new sands),and the collapsibility compressive strength is 5.2 MPa,which is lower than the collapsibility compressive strength of new sands(7.7 MPa).This indicates that the reclamation of CO_(2) sodium silicate used sands by steam leaching is a feasible method.
文摘The introduction of metals into vitreous matrices is the origin of various interesting phenomena;in particular,the presence of copper ions in glass has been the subject of considerable research because of its numerous applications.The ion-exchange process is primarily used to introduce copper ions into glass matrices.The thermoluminescence(TL)of silicate glass was studied to evaluate its potential as gamma-sensitive material for dosimetric applications;the effect of copper doping on the thermoluminescent sensitivity was investigated using the Cu-Na ion-exchange technique for different concentrations and doping conditions,over a wide dose range of 10 mGy to 100 kGy.The results showed that Cu doping significantly improved the sensitivity of the glasses to gamma radiation.After the ion-exchange,two peaks appeared in the glow curves at approximately 175 and 230°C,respectively,which possibly originated from the Cu^(+) centers,along with a weak TL peak at around 320℃.We also attempted to explain the origin of the observed thermoluminescence by exploiting the Electron paramagnetic resonance(EPR)spectra.The results clearly show quenching of the TL emission with increasing copper concentrations.The present work indicates that the thermoluminescence response of these glasses to gamma rays can be reasonably measured in the range of 0.001-100 kGy.This study also facilitates the understanding of the basic TL mechanism in this glass system.