Rechargeable ion batteries require anode materials with excellent performance,presenting a key challenge for researchers.This paper explores the potential of using two-dimensional dumbbell silicene as an anode materia...Rechargeable ion batteries require anode materials with excellent performance,presenting a key challenge for researchers.This paper explores the potential of using two-dimensional dumbbell silicene as an anode material for alkali metal ion batteries through density functional theory(DFT)calculations.Our findings demonstrate that alkali metal ions have negative adsorption energies on dumbbell silicene,and the energy barriers for Li/Na/K ion diffusion are as low as0.032 e V/0.055 e V/0.21 e V,indicating that metal ions can easily diffuse across the entire surface of dumbbell silicene.Additionally,the average open circuit voltages of dumbbell silicene as anode for Li-ion,Na-ion,and K-ion batteries are 0.42 V,0.41 V,and 0.60 V,respectively,with corresponding storage capacities of 716 m Ah/g,622 m Ah/g,and 716 m Ah/g.These results suggest that dumbbell silicene is an ideal anode material for Li-ion,Na-ion,and K-ion batteries,with high capacity,low open circuit voltage,and high ion diffusion kinetics.Moreover,our calculations show that the theoretical capacities obtained using DFT-D2 are higher than those obtained using DFT-D3,providing a valuable reference for subsequent theoretical calculations.展开更多
We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV...We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV, which is much lower than on graphene and Si bulk. The diffusion barriers along the axis of zigzag silicene nanoribbon range from0. 1 to 0.25 eV due to an edge effect, while the diffusion energy barrier is about 0.5 eV for a Li adatom to enter into a silicene nanoribbon. Our calculations indicate that using silicene nanoribbons as anodes is favorable for a Li-ion battery.展开更多
Using the two-dimensional ionic Hubbard model as a simple basis for describing the electronic structure of silicene in the presence of an electric field induced by the substrate, we use the coherent-potential approxim...Using the two-dimensional ionic Hubbard model as a simple basis for describing the electronic structure of silicene in the presence of an electric field induced by the substrate, we use the coherent-potential approximation to calculate tbe zero-temperature phase diagram and the associated spectral function at half filling. We find that any degree of symmetry- breaking induced by the electric field causes the silicene structure to lose its Dirac fermion characteristics, thus providing a simple mechanism for the disappearance of the Dirac cone.展开更多
We investigate the electron transport in silicene with both staggered electric potential and magnetization; the latter comes from the magnetic proximity effect by depositing silicene on a magnetic insulator. It is sho...We investigate the electron transport in silicene with both staggered electric potential and magnetization; the latter comes from the magnetic proximity effect by depositing silicene on a magnetic insulator. It is shown that the silicene could be a spin and valley half metal under appropriate parameters when the spin–orbit interaction is considered; further, the filtered spin and valley could be controlled by modulating the staggered potential or magnetization. It is also found that in the spin-valve structure of silicene, not only can the antiparallel magnetization configuration significantly reduce the valve-structure conductance, but the reversing staggered electric potential can cause a high-performance magnetoresistance due to the spin and valley blocking effects. Our findings show that the silicene might be an ideal basis for the spin and valley filter analyzer devices.展开更多
We report the growth of Si nanostructures, either as thin films or nanoparticles, on graphene substrates. The Si nanostructures are shown to be single crystalline, air stable and oxidation resistive, as indicated by t...We report the growth of Si nanostructures, either as thin films or nanoparticles, on graphene substrates. The Si nanostructures are shown to be single crystalline, air stable and oxidation resistive, as indicated by the observation of a single crystalline Si Raman mode at around 520 cm^-1, a STM image of an ordered surface structure under ambient condition, and a Schottky junction with graphite. Ultra-thin silicon regions exhibit silicene-like behavior, including a Raman mode at around 550 cm^-1, a triangular lattice structure in STM that has distinctly different lattice spacing from that of either graphene or thicker Si, and metallic conductivity of up to 500 times higher than that of graphite. This work suggests a bottom-up approach to forming a Si nanostructure array on a large-scale patterned graphene substrate that can be used to fabricate nanoscale Si electronic devices.展开更多
√√The electronic structures of monolayer silicenes(4 × 4 and■ ×■R13.9o) grown on Ag(111) surface are studied by scanning tunneling spectroscopy(STS) and density functional theory(DFT) calculations. While...√√The electronic structures of monolayer silicenes(4 × 4 and■ ×■R13.9o) grown on Ag(111) surface are studied by scanning tunneling spectroscopy(STS) and density functional theory(DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states.The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations.展开更多
Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silic...Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silicene and√ silice√ne–graphene layered structures on Ir(111) substrates. For silicene on Ir(111), the buckled(3 ×3) silicene/(7 ×7)Ir(111) configuration and its electronic structure are fully discussed. For silicene–graphene layered structures, silicene layer can be constructed underneath graphene layer by an intercalation method. These results indicate the possibility of integrating silicene with graphene and may link up with potential applications in nanoelectronics and related areas.展开更多
Silicene, a monolayer of silicon atoms arranged in a honeycomb lattice, has been undergoing rapid development in recent years due to its superior electronic properties and its compatibility with mature silicon-based s...Silicene, a monolayer of silicon atoms arranged in a honeycomb lattice, has been undergoing rapid development in recent years due to its superior electronic properties and its compatibility with mature silicon-based semiconductor technology. The successful synthesis of silicene on several substrates provides a solid foundation for the use of silicene in future microelectronic devices. In this review, we discuss the growth mechanism of silicene on an Ag(111) surface, which is crucial for achieving high quality silicene. Several critical issues related to the electronic properties of silicene are also summarized, including the point defect effect, substrate effect, intercalation of alkali metal, and alloying with transition metals.展开更多
By using density functional theory(DFT)-based first-principles calculations, the structural stability and electronic properties for two kinds of silicene domain boundaries, forming along armchair edge and zigzag edge,...By using density functional theory(DFT)-based first-principles calculations, the structural stability and electronic properties for two kinds of silicene domain boundaries, forming along armchair edge and zigzag edge, have been investigated. The results indicate that a linkage of tetragonal and octagonal rings(4|8) appears along the armchair edge, while a linkage of paired pentagonal and octagonal rings(5|5|8) appears along the zigzag edge. Different from graphene, the buckling properties of silicene lead to two mirror symmetrical edges of silicene line-defect. The formation energies indicate that the 5|5|8 domain boundary is more stable than the 4|8 domain boundary. Similar to graphene, the calculated electronic properties show that the 5|5|8 domain boundaries exhibit metallic properties and the 4|8 domain boundaries are half-metal.Both domain boundaries create the perfect one-dimensional(1D) metallic wires. Due to the metallic properties, these two kinds of nanowires can be used to build the silicene-based devices.展开更多
The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium G...The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function (NEGF) approach self-consistently coupled with a three-dimensional (3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASiNR FET. A novel two-parameter strain mag- nitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing HfO2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance. Furthermore, a general model power (GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASiNR under strain.展开更多
The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane ...The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane is staler against the metal adatoms than silicene.Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene.Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed.However,the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate.Combining the adsorption energy with the diffusion energy barriers,it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage.In order to avoid forming a metal cluster,we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane.Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials.展开更多
Two-dimensional (2D) metamaterials are considered to be of enormous relevance to the progress of all exact sciences. Since the discovery of graphene, researchers have increasingly investigated in depth the details o...Two-dimensional (2D) metamaterials are considered to be of enormous relevance to the progress of all exact sciences. Since the discovery of graphene, researchers have increasingly investigated in depth the details of electrical/optical proper- ties pertinent to other 2D metamaterials, including those relating to the silicene. In this review are included the details and comparisons of the atomic structures, energy diagram bands, substrates, charge densities, charge mobilities, conductivities, absorptions, electrical permittivities, dispersion relations of the wave vectors, and supported electromagnetic modes related to graphene and silicene. Hence, this review can help readers to acquire, recover or increase the necessary technological basis for the development of more specific studies on graphene and silicene.展开更多
Silicene is a two-dimensional(2D) material, which is composed of a single layer of silicon atoms with sp2–sp3mixed hybridization. The sp2–sp3mixed hybridization renders silicene excellent reactive ability, facilitat...Silicene is a two-dimensional(2D) material, which is composed of a single layer of silicon atoms with sp2–sp3mixed hybridization. The sp2–sp3mixed hybridization renders silicene excellent reactive ability, facilitating the chemical modification of silicene. It has been demonstrated that chemical modification effectively enables the tuning of the properties of silicene. We now review all kinds of chemical modification methods for silicene, including hydrogenation, halogenation,organic surface modification, oxidation, doping and formation of 2D hybrids. The effects of these chemical modification methods on the geometrical, electronic, optical, and magnetic properties of silicene are discussed. The potential applications of chemically modified silicene in a variety of fields such as electronics, optoelectronics, and magnetoelectronics are introduced. We finally envision future work on the chemical modification of silicene for further advancing the development of silicene.展开更多
We propose a workable scheme for generating a bulk valley pump current in a silicene-based device which consists of two pumping regions characterized by time-dependent strain and staggered potentials, respectively. In...We propose a workable scheme for generating a bulk valley pump current in a silicene-based device which consists of two pumping regions characterized by time-dependent strain and staggered potentials, respectively. In a one-dimension model, we show that a pure valley current can be generated, in which the two valley currents have the same magnitude but flow in opposite directions. Besides, the pumped valley current is quantized and maximized when the Fermi energy of the system locates in the bandgap opened by the two pumping potentials. Furthermore, the valley current can be finely controlled by tuning the device parameters. Our results are useful for the development of valleytronic devices based on two-dimensional materials.展开更多
Silicene, a newly isolated silicon allotrope with a two-dimensional(2D) honeycomb lattice structure, is predicted to have electronic properties similar to those of graphene, including the existence of signature Dirac ...Silicene, a newly isolated silicon allotrope with a two-dimensional(2D) honeycomb lattice structure, is predicted to have electronic properties similar to those of graphene, including the existence of signature Dirac fermions. Furthermore,the strong spin–orbit interaction of Si atoms potentially makes silicene an experimentally accessible 2D topological insulator. Since 2012, silicene films have been experimentally synthesized on Ag(111) and other substrates, motivating a burst of research on silicene. We and collaborators have employed STM investigations and first principles calculations to intensively study the structure and electronic properties of silicene films on Ag(111), including monolayer, bilayer, and multilayer silicenes, as well as hydrogenation of silicene.展开更多
Spintronics involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. The fascinating spin-resolved properties of graphene motivate numerous researchers to study spintron...Spintronics involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. The fascinating spin-resolved properties of graphene motivate numerous researchers to study spintronics in graphene and other two-dimensional(2D) materials. Silicene, the silicon analog of graphene, is considered to be a promising material for spintronics. Here, we present a review of theoretical advances with regard to spin-dependent properties, including the electric field- and exchange field-tunable topological properties of silicene and the corresponding spintronic device simulations.展开更多
The spin-valley Hall conductivity(SHC-VHC) of two-dimensional material ferromagnetic graphene's silicon analog,silicene, is investigated in the presence of strain within the Kubo formalism in the context of the Kan...The spin-valley Hall conductivity(SHC-VHC) of two-dimensional material ferromagnetic graphene's silicon analog,silicene, is investigated in the presence of strain within the Kubo formalism in the context of the Kane–Mele Hamiltonian.The Dirac cone approximation has been used to investigate the dynamics of carriers under the strain along the armchair(AC) direction. In particular, we study the effect of external static electric field on these conductivities under the strain.In the presence of the strain, the carriers have a larger effective mass and the transport decreases. Our findings show that SHC changes with respect to the direction of the applied electric field symmetrically while VHC increases independently.Furthermore, the reflection symmetry of the structure has been broken with the electric field and a phase transition occurs to topological insulator for strained ferromagnetic silicene. A critical strain is found in the presence of the electric field around 45%. SHC(VHC) decreases(increases) for strains smaller than this value symmetrically while it increases(decreases) for strains larger than one.展开更多
Free standing silicene is a two-dimensional silicon monolayer with a buckled honeycomb lattice and a Dirac band structure. Ever since its first successful synthesis in the laboratory, silicene has been considered as a...Free standing silicene is a two-dimensional silicon monolayer with a buckled honeycomb lattice and a Dirac band structure. Ever since its first successful synthesis in the laboratory, silicene has been considered as an option for post-silicon electronics, as an alternative to graphene and other two-dimensional materials. Despite its theoretical high carrier mobility,the zero band gap characteristic makes pure silicene impossible to use directly as a field effect transistor(FET) operating at room temperature. Here, we first review the theoretical approaches to open a band gap in silicene without diminishing its excellent electronic properties and the corresponding simulations of silicene transistors based on an opened band gap.An all-metallic silicene FET without an opened band gap is also introduced. The two chief obstacles for realization of a silicene transistor are silicene’s strong interaction with a metal template and its instability in air. In the final part, we briefly describe a recent experimental advance in fabrication of a proof-of-concept silicene device with Dirac ambipolar charge transport resembling a graphene FET, fabricated via a growth-transfer technique.展开更多
Ag(111) is currently the most often used substrate for growing silicene films. Silicene forms a variety of different phases on the Ag(111) substrate. However, the structures of these phases are still not fully underst...Ag(111) is currently the most often used substrate for growing silicene films. Silicene forms a variety of different phases on the Ag(111) substrate. However, the structures of these phases are still not fully understood so far. In this brief review we summarize the growth condition and resulting silicene phases on Ag(111), and discuss the most plausible structural model and electronic property of individual phases. The existing debates on silicene on Ag(111) system are clarified as mush as possible.展开更多
Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials.The relatively large spin-orbit coupling in silicene contributes to remarkable qu...Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials.The relatively large spin-orbit coupling in silicene contributes to remarkable quantum spin Hall effect,which leads to distinctive valley-dependent transport properties compared with intrinsic graphene.In this paper,quantized conductance and valley polarization in silicene nanoconstrictions are theoretically investigated in quantum spin-Hall insulator phase.Nearly perfect valley filter effect is found by aligning the gate voltage in the central constriction region.However,the valley polarization plateaus are shifted with the increase of spin-orbit coupling strength,accompanied by smooth variation of polarization reversal.Our findings provide new strategies to control the valley polarization in valleytronic devices.展开更多
基金the National Natural Science Foundation of China(Grant No.12274112)the Overseas Scientists Sponsorship Program of Hebei Province of China(Grant No.C20210330)the State Key Laboratory of Reliability and Intelligence of Electrical Equipment of Hebei University of Technology(Grant No.EERI PI2020009)。
文摘Rechargeable ion batteries require anode materials with excellent performance,presenting a key challenge for researchers.This paper explores the potential of using two-dimensional dumbbell silicene as an anode material for alkali metal ion batteries through density functional theory(DFT)calculations.Our findings demonstrate that alkali metal ions have negative adsorption energies on dumbbell silicene,and the energy barriers for Li/Na/K ion diffusion are as low as0.032 e V/0.055 e V/0.21 e V,indicating that metal ions can easily diffuse across the entire surface of dumbbell silicene.Additionally,the average open circuit voltages of dumbbell silicene as anode for Li-ion,Na-ion,and K-ion batteries are 0.42 V,0.41 V,and 0.60 V,respectively,with corresponding storage capacities of 716 m Ah/g,622 m Ah/g,and 716 m Ah/g.These results suggest that dumbbell silicene is an ideal anode material for Li-ion,Na-ion,and K-ion batteries,with high capacity,low open circuit voltage,and high ion diffusion kinetics.Moreover,our calculations show that the theoretical capacities obtained using DFT-D2 are higher than those obtained using DFT-D3,providing a valuable reference for subsequent theoretical calculations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074212 and 11204123)the Natural Science Foundation of Jiangsu province,China(Grant No.BK20130945)
文摘We perform a density functional study on the adsorption and diffusion of Li atoms on silicene sheet and zigzag nanoribbons. Our results show that the diffusion energy barrier of Li adatoms on silicene sheet is 0.25 eV, which is much lower than on graphene and Si bulk. The diffusion barriers along the axis of zigzag silicene nanoribbon range from0. 1 to 0.25 eV due to an edge effect, while the diffusion energy barrier is about 0.5 eV for a Li adatom to enter into a silicene nanoribbon. Our calculations indicate that using silicene nanoribbons as anodes is favorable for a Li-ion battery.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11174219)the Program for New Century Excellent Talents in Universities,China (Grant No. NCET-13-0428)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110072110044)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Chinathe Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Education Ministry of China
文摘Using the two-dimensional ionic Hubbard model as a simple basis for describing the electronic structure of silicene in the presence of an electric field induced by the substrate, we use the coherent-potential approximation to calculate tbe zero-temperature phase diagram and the associated spectral function at half filling. We find that any degree of symmetry- breaking induced by the electric field causes the silicene structure to lose its Dirac fermion characteristics, thus providing a simple mechanism for the disappearance of the Dirac cone.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074032, 11074233, and 11274079) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131284).
文摘We investigate the electron transport in silicene with both staggered electric potential and magnetization; the latter comes from the magnetic proximity effect by depositing silicene on a magnetic insulator. It is shown that the silicene could be a spin and valley half metal under appropriate parameters when the spin–orbit interaction is considered; further, the filtered spin and valley could be controlled by modulating the staggered potential or magnetization. It is also found that in the spin-valve structure of silicene, not only can the antiparallel magnetization configuration significantly reduce the valve-structure conductance, but the reversing staggered electric potential can cause a high-performance magnetoresistance due to the spin and valley blocking effects. Our findings show that the silicene might be an ideal basis for the spin and valley filter analyzer devices.
基金supported by ARO/Materials Science(Grant No.W911NF-10-1-0281 and W911NF-18-1-0079,managed by Dr.Chakrapani Varanasi)
文摘We report the growth of Si nanostructures, either as thin films or nanoparticles, on graphene substrates. The Si nanostructures are shown to be single crystalline, air stable and oxidation resistive, as indicated by the observation of a single crystalline Si Raman mode at around 520 cm^-1, a STM image of an ordered surface structure under ambient condition, and a Schottky junction with graphite. Ultra-thin silicon regions exhibit silicene-like behavior, including a Raman mode at around 550 cm^-1, a triangular lattice structure in STM that has distinctly different lattice spacing from that of either graphene or thicker Si, and metallic conductivity of up to 500 times higher than that of graphite. This work suggests a bottom-up approach to forming a Si nanostructure array on a large-scale patterned graphene substrate that can be used to fabricate nanoscale Si electronic devices.
基金supported by the Ministry of Education,Culture,Sports,Science and Technology(MEXT) through Grants-in-Aid for Scientific Research(Grant Nos.24241040 and 25110008)the World Premier International Research Center Initiative(WPI),MEXT,Japan
文摘√√The electronic structures of monolayer silicenes(4 × 4 and■ ×■R13.9o) grown on Ag(111) surface are studied by scanning tunneling spectroscopy(STS) and density functional theory(DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states.The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations.
基金supported by the National Basic Research Program of China(Grant Nos.2013CBA01600 and 2011CB932700)the National Natural Science Foundation of China(Grant Nos.61222112,61390501,51325204,11334006,and 61306114)+1 种基金the Science Fund from Chinese Academy of Sciences(Grant Nos.1731300500015 and XDB07030100)the Fundamental Research Funds for the Central Universities,China
文摘Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silicene and√ silice√ne–graphene layered structures on Ir(111) substrates. For silicene on Ir(111), the buckled(3 ×3) silicene/(7 ×7)Ir(111) configuration and its electronic structure are fully discussed. For silicene–graphene layered structures, silicene layer can be constructed underneath graphene layer by an intercalation method. These results indicate the possibility of integrating silicene with graphene and may link up with potential applications in nanoelectronics and related areas.
基金supported by the National Natural Science Foundation of China(Grant No.11134005)
文摘Silicene, a monolayer of silicon atoms arranged in a honeycomb lattice, has been undergoing rapid development in recent years due to its superior electronic properties and its compatibility with mature silicon-based semiconductor technology. The successful synthesis of silicene on several substrates provides a solid foundation for the use of silicene in future microelectronic devices. In this review, we discuss the growth mechanism of silicene on an Ag(111) surface, which is crucial for achieving high quality silicene. Several critical issues related to the electronic properties of silicene are also summarized, including the point defect effect, substrate effect, intercalation of alkali metal, and alloying with transition metals.
基金supported by the National Natural Science Foundation of China(Grant Nos.61390501 and 51325204)the National Basic Research Program of China(Grant Nos.2011CB808401 and 2011CB921702)the Tainjin Supercomputing Center,Chinese Academy of Sciences
文摘By using density functional theory(DFT)-based first-principles calculations, the structural stability and electronic properties for two kinds of silicene domain boundaries, forming along armchair edge and zigzag edge, have been investigated. The results indicate that a linkage of tetragonal and octagonal rings(4|8) appears along the armchair edge, while a linkage of paired pentagonal and octagonal rings(5|5|8) appears along the zigzag edge. Different from graphene, the buckling properties of silicene lead to two mirror symmetrical edges of silicene line-defect. The formation energies indicate that the 5|5|8 domain boundary is more stable than the 4|8 domain boundary. Similar to graphene, the calculated electronic properties show that the 5|5|8 domain boundaries exhibit metallic properties and the 4|8 domain boundaries are half-metal.Both domain boundaries create the perfect one-dimensional(1D) metallic wires. Due to the metallic properties, these two kinds of nanowires can be used to build the silicene-based devices.
文摘The electrical characteristics of a double-gate armchair silicene nanoribbon field-effect-transistor (DG ASiNR FET) are thoroughly investigated by using a ballistic quantum transport model based on non-equilibrium Green's function (NEGF) approach self-consistently coupled with a three-dimensional (3D) Poisson equation. We evaluate the influence of variation in uniaxial tensile strain, ribbon temperature and oxide thickness on the on-off current ratio, subthreshold swing, transconductance and the delay time of a 12-nm-length ultranarrow ASiNR FET. A novel two-parameter strain mag- nitude and temperature-dependent model is presented for designing an optimized device possessing balanced amelioration of all the electrical parameters. We demonstrate that employing HfO2 as the gate insulator can be a favorable choice and simultaneous use of it with proper combination of temperature and strain magnitude can achieve better device performance. Furthermore, a general model power (GMP) is derived which explicitly provides the electron effective mass as a function of the bandgap of a hydrogen passivated ASiNR under strain.
基金Project supported by the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20152ACB21014,20151BAB202006,and 20142BAB212002)the Fund from the Jiangxi Provincial Educational Committee,China(Grant No.GJJ14254)supported by the Oversea Returned Project from the Ministry of Education,China
文摘The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane is staler against the metal adatoms than silicene.Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene.Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed.However,the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate.Combining the adsorption energy with the diffusion energy barriers,it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage.In order to avoid forming a metal cluster,we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane.Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials.
基金Project supported by the National Council for Scientific and Technological Development(CNPq)
文摘Two-dimensional (2D) metamaterials are considered to be of enormous relevance to the progress of all exact sciences. Since the discovery of graphene, researchers have increasingly investigated in depth the details of electrical/optical proper- ties pertinent to other 2D metamaterials, including those relating to the silicene. In this review are included the details and comparisons of the atomic structures, energy diagram bands, substrates, charge densities, charge mobilities, conductivities, absorptions, electrical permittivities, dispersion relations of the wave vectors, and supported electromagnetic modes related to graphene and silicene. Hence, this review can help readers to acquire, recover or increase the necessary technological basis for the development of more specific studies on graphene and silicene.
基金supported by the National Basic Program of China(Grant No.2013CB632101)the National Natural Science Foundation of China(Grant Nos.61222404 and 61474097)the Fundamental Research Funds for the Central Universities of China(Grant No.2014XZZX003-09)
文摘Silicene is a two-dimensional(2D) material, which is composed of a single layer of silicon atoms with sp2–sp3mixed hybridization. The sp2–sp3mixed hybridization renders silicene excellent reactive ability, facilitating the chemical modification of silicene. It has been demonstrated that chemical modification effectively enables the tuning of the properties of silicene. We now review all kinds of chemical modification methods for silicene, including hydrogenation, halogenation,organic surface modification, oxidation, doping and formation of 2D hybrids. The effects of these chemical modification methods on the geometrical, electronic, optical, and magnetic properties of silicene are discussed. The potential applications of chemically modified silicene in a variety of fields such as electronics, optoelectronics, and magnetoelectronics are introduced. We finally envision future work on the chemical modification of silicene for further advancing the development of silicene.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274059,11574045,and 11704165)
文摘We propose a workable scheme for generating a bulk valley pump current in a silicene-based device which consists of two pumping regions characterized by time-dependent strain and staggered potentials, respectively. In a one-dimension model, we show that a pure valley current can be generated, in which the two valley currents have the same magnitude but flow in opposite directions. Besides, the pumped valley current is quantized and maximized when the Fermi energy of the system locates in the bandgap opened by the two pumping potentials. Furthermore, the valley current can be finely controlled by tuning the device parameters. Our results are useful for the development of valleytronic devices based on two-dimensional materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.11334011,11222431,and 11322431)the National Basic Research Program of China(Grant Nos.2012CB921403,2013CBA01600,and 2012CB921703)+1 种基金the "Strategic Priority Research Program" of the Chinese Academy of Sciencesthe Hundred Talents Program of Institute of Physics,Chinese Academy of Sciences
文摘Silicene, a newly isolated silicon allotrope with a two-dimensional(2D) honeycomb lattice structure, is predicted to have electronic properties similar to those of graphene, including the existence of signature Dirac fermions. Furthermore,the strong spin–orbit interaction of Si atoms potentially makes silicene an experimentally accessible 2D topological insulator. Since 2012, silicene films have been experimentally synthesized on Ag(111) and other substrates, motivating a burst of research on silicene. We and collaborators have employed STM investigations and first principles calculations to intensively study the structure and electronic properties of silicene films on Ag(111), including monolayer, bilayer, and multilayer silicenes, as well as hydrogenation of silicene.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274016 and 11474012)the National Basic Research Program of China(Grant Nos.2013CB932604 and 2012CB619304)
文摘Spintronics involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. The fascinating spin-resolved properties of graphene motivate numerous researchers to study spintronics in graphene and other two-dimensional(2D) materials. Silicene, the silicon analog of graphene, is considered to be a promising material for spintronics. Here, we present a review of theoretical advances with regard to spin-dependent properties, including the electric field- and exchange field-tunable topological properties of silicene and the corresponding spintronic device simulations.
文摘The spin-valley Hall conductivity(SHC-VHC) of two-dimensional material ferromagnetic graphene's silicon analog,silicene, is investigated in the presence of strain within the Kubo formalism in the context of the Kane–Mele Hamiltonian.The Dirac cone approximation has been used to investigate the dynamics of carriers under the strain along the armchair(AC) direction. In particular, we study the effect of external static electric field on these conductivities under the strain.In the presence of the strain, the carriers have a larger effective mass and the transport decreases. Our findings show that SHC changes with respect to the direction of the applied electric field symmetrically while VHC increases independently.Furthermore, the reflection symmetry of the structure has been broken with the electric field and a phase transition occurs to topological insulator for strained ferromagnetic silicene. A critical strain is found in the presence of the electric field around 45%. SHC(VHC) decreases(increases) for strains smaller than this value symmetrically while it increases(decreases) for strains larger than one.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274016,11474012,and 1207141)the National Basic Research Program of China(Grant Nos.2013CB932604 and 2012CB619304)
文摘Free standing silicene is a two-dimensional silicon monolayer with a buckled honeycomb lattice and a Dirac band structure. Ever since its first successful synthesis in the laboratory, silicene has been considered as an option for post-silicon electronics, as an alternative to graphene and other two-dimensional materials. Despite its theoretical high carrier mobility,the zero band gap characteristic makes pure silicene impossible to use directly as a field effect transistor(FET) operating at room temperature. Here, we first review the theoretical approaches to open a band gap in silicene without diminishing its excellent electronic properties and the corresponding simulations of silicene transistors based on an opened band gap.An all-metallic silicene FET without an opened band gap is also introduced. The two chief obstacles for realization of a silicene transistor are silicene’s strong interaction with a metal template and its instability in air. In the final part, we briefly describe a recent experimental advance in fabrication of a proof-of-concept silicene device with Dirac ambipolar charge transport resembling a graphene FET, fabricated via a growth-transfer technique.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB921703 and 2013CB921702)the National Natural Science Foundation of China(Grant No.11334011)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07020100)
文摘Ag(111) is currently the most often used substrate for growing silicene films. Silicene forms a variety of different phases on the Ag(111) substrate. However, the structures of these phases are still not fully understood so far. In this brief review we summarize the growth condition and resulting silicene phases on Ag(111), and discuss the most plausible structural model and electronic property of individual phases. The existing debates on silicene on Ag(111) system are clarified as mush as possible.
基金the Natural Science Foundation of Zhejiang Province,China(Grant No.LQ17A040001)the National Natural Science Foundation of China(Grant Nos.61874078,11647046,and 61904125)+1 种基金the National Key Research and Development Program of China(Grant No.2018YFB2202100)the Science and Technology Planning Project of Wenzhou City(Grant No.G20180012).
文摘Valley filter is a promising device for producing valley polarized current in graphene-like two-dimensional honeycomb lattice materials.The relatively large spin-orbit coupling in silicene contributes to remarkable quantum spin Hall effect,which leads to distinctive valley-dependent transport properties compared with intrinsic graphene.In this paper,quantized conductance and valley polarization in silicene nanoconstrictions are theoretically investigated in quantum spin-Hall insulator phase.Nearly perfect valley filter effect is found by aligning the gate voltage in the central constriction region.However,the valley polarization plateaus are shifted with the increase of spin-orbit coupling strength,accompanied by smooth variation of polarization reversal.Our findings provide new strategies to control the valley polarization in valleytronic devices.