Ti-bearing high-entropy superalloys(HESAs)often suffer from severe intergranular embrittlement and terrible oxidation degradation at intermediate temperatures.Here we showcase that minor Si addition can effectively mi...Ti-bearing high-entropy superalloys(HESAs)often suffer from severe intergranular embrittlement and terrible oxidation degradation at intermediate temperatures.Here we showcase that minor Si addition can effectively mitigate the intergranular embrittlement and improve the oxidation resistance of the a(Ni_(2)Co_(2)FeCr)_(92) Ti_(4)Al_(4) HESA at 700℃ simultaneously.Experimental analysis revealed that the intergranu-lar G phase induced by 2 at%Si addition can effectively suppress the inward diffusion of oxygen along grain boundaries at 700℃,thus enhancing the tensile ductility of the alloy from∼8.3%to∼13.4%.Be-sides,the 2 at%Si addition facilitated the formation of a continuous Al_(2)O_(3) layer during oxidation,con-tributing to a remarkable reduction in the growth rate of the oxide scale to a quarter of the Si-free HESA.Our results demonstrate that Si can be a favorable alloying element to design advanced HESAs with syn-ergistically improved thermal-mechanical performance.展开更多
The Ti electrode was deposited on the (0001) face of an n-type 4H-SiC substrate by magnetron sputtering. The effect of the electrode placement method during the annealing treatment on the contact property was carefu...The Ti electrode was deposited on the (0001) face of an n-type 4H-SiC substrate by magnetron sputtering. The effect of the electrode placement method during the annealing treatment on the contact property was carefully investigated. When the electrode was faced to the Si tray and annealed, it showed ohmic behavior, otherwise it showed a non-ohmic property. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the electrode phase, composition, thickness, and surface morphology. The additional silicon introduced from the Si tray played a key role in the formation of the ohmic contact on the Ti/4H-SiC contact.展开更多
Effects of Al- Si addition on hot modulus of rup- ture ~ HMOR) . thermal shock resistance ~ TSR~ . phase composition and mierostructure of low-carbon MgO - C materials were investigated. The results show that: Al an...Effects of Al- Si addition on hot modulus of rup- ture ~ HMOR) . thermal shock resistance ~ TSR~ . phase composition and mierostructure of low-carbon MgO - C materials were investigated. The results show that: Al and Si addition to low-carbon MgO - C materials leads to dramatic increase in MOR at elevated temperatures; it increases from 4 MPa to 11 -21 MPa at 1 200 ℃ and from 2 MPa to 21 -29 MPa at 1 400 ℃. Al and Si addition to low-carbon MgO - C materials also improves TSR: residual strength ratio after thermal shock when △T = 1 200 ℃ is increased,from 44% to 73% - 77%. Al reacts with C and N2 to form, Al4C3 and AlN, Si reacts with C to form SiC. Ultimately. in-situ formed non- oxides increase appreciably with temperature rising and are well interlaced in periclase skeleton structure at 1 300 -1 400 ℃. which is beneficial to thermomechanical properties.展开更多
The long-term corrosion behaviors of four variants of oxide dispersion strengthened(ODS)iron-based alloys in the stagnant oxygen-saturated lead–bismuth eutectic(LBE)at 550℃ were studied herein.The effects of silicon...The long-term corrosion behaviors of four variants of oxide dispersion strengthened(ODS)iron-based alloys in the stagnant oxygen-saturated lead–bismuth eutectic(LBE)at 550℃ were studied herein.The effects of silicon and aluminum content on the thickness,morphology and composition of the oxide scale were explored with the aid of X-ray diffraction(XRD),scanning electron microscopy(SEM),electron probe micro-analyzer(EPMA)and X-ray photoelectron spectroscopy(XPS).The addition of 1.5 wt%silicon is not able to contribute to forming a protective external silicon oxide film on the surface of aluminum-free ODS iron-based alloy,while the addition of aluminum promotes the formation of a thin and continuous alumina oxide scale.In the meantime,an appropriate amount of silicon becomes the heterogeneous nucleation site for alumina during the initial stage of oxidation,giving rise to the rapid formation of a protective alumina scale.However,excessive silicon has a negative impact on the formation of continuous alumina scale,because it may compete with aluminum to absorb more oxygen.The result of oxidation kinetics in ODS iron-based alloy shows that the parabolic rate constant of the alumina oxide scale is 3–4 orders of magnitude lower than that of the scale mainly composed of iron and chromium oxide.展开更多
This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of m...This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of metal additives inhibited nitridation,while some metal additives such as Fe,Cu,Cr,and Ca increased nitrida—tion.Otherwise,the addition of metals might lead to the degradation of physical and mechanical properties of Si3N4.All the rare earth oxides,especially CeO2 and Eu2O3,showed nitridation enhancing effect.In addition,ZrO2 with small particle size showed a stronger enhancing effect.展开更多
基金the financial support from Hong Kong Research Grant Council(RGC)(Grant Nos.CityU 11214820,CityU 11209021,CityU 21205621,CityU 9360161 andC1017-21G)theNationalNatural Science Foundation of China(Grant Nos.52101151 and52101162)+3 种基金the Shenzhen Science and Technology Program(Grant No.SGDX20210823104002016)the Hong Kong Poly-technic University thanks the financial support from Hong Kong RGC(Grant Nos.25202719 and 15227121)the finan-cial support from National Natural Science Foundation of China(Grant No.52101135)the Shenzhen Science and Technology Program(Grant No.RCBS20210609103202012).
文摘Ti-bearing high-entropy superalloys(HESAs)often suffer from severe intergranular embrittlement and terrible oxidation degradation at intermediate temperatures.Here we showcase that minor Si addition can effectively mitigate the intergranular embrittlement and improve the oxidation resistance of the a(Ni_(2)Co_(2)FeCr)_(92) Ti_(4)Al_(4) HESA at 700℃ simultaneously.Experimental analysis revealed that the intergranu-lar G phase induced by 2 at%Si addition can effectively suppress the inward diffusion of oxygen along grain boundaries at 700℃,thus enhancing the tensile ductility of the alloy from∼8.3%to∼13.4%.Be-sides,the 2 at%Si addition facilitated the formation of a continuous Al_(2)O_(3) layer during oxidation,con-tributing to a remarkable reduction in the growth rate of the oxide scale to a quarter of the Si-free HESA.Our results demonstrate that Si can be a favorable alloying element to design advanced HESAs with syn-ergistically improved thermal-mechanical performance.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB326402)the Innovation Program of Shanghai Municipal Education Commission,China(Grant No.13ZZ108)the Shanghai Science and Technology Commission,China(Grant No.13520502700)
文摘The Ti electrode was deposited on the (0001) face of an n-type 4H-SiC substrate by magnetron sputtering. The effect of the electrode placement method during the annealing treatment on the contact property was carefully investigated. When the electrode was faced to the Si tray and annealed, it showed ohmic behavior, otherwise it showed a non-ohmic property. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the electrode phase, composition, thickness, and surface morphology. The additional silicon introduced from the Si tray played a key role in the formation of the ohmic contact on the Ti/4H-SiC contact.
文摘Effects of Al- Si addition on hot modulus of rup- ture ~ HMOR) . thermal shock resistance ~ TSR~ . phase composition and mierostructure of low-carbon MgO - C materials were investigated. The results show that: Al and Si addition to low-carbon MgO - C materials leads to dramatic increase in MOR at elevated temperatures; it increases from 4 MPa to 11 -21 MPa at 1 200 ℃ and from 2 MPa to 21 -29 MPa at 1 400 ℃. Al and Si addition to low-carbon MgO - C materials also improves TSR: residual strength ratio after thermal shock when △T = 1 200 ℃ is increased,from 44% to 73% - 77%. Al reacts with C and N2 to form, Al4C3 and AlN, Si reacts with C to form SiC. Ultimately. in-situ formed non- oxides increase appreciably with temperature rising and are well interlaced in periclase skeleton structure at 1 300 -1 400 ℃. which is beneficial to thermomechanical properties.
基金supported by the National Innovation Center of Radiation Application(No.KFZC2020020603).
文摘The long-term corrosion behaviors of four variants of oxide dispersion strengthened(ODS)iron-based alloys in the stagnant oxygen-saturated lead–bismuth eutectic(LBE)at 550℃ were studied herein.The effects of silicon and aluminum content on the thickness,morphology and composition of the oxide scale were explored with the aid of X-ray diffraction(XRD),scanning electron microscopy(SEM),electron probe micro-analyzer(EPMA)and X-ray photoelectron spectroscopy(XPS).The addition of 1.5 wt%silicon is not able to contribute to forming a protective external silicon oxide film on the surface of aluminum-free ODS iron-based alloy,while the addition of aluminum promotes the formation of a thin and continuous alumina oxide scale.In the meantime,an appropriate amount of silicon becomes the heterogeneous nucleation site for alumina during the initial stage of oxidation,giving rise to the rapid formation of a protective alumina scale.However,excessive silicon has a negative impact on the formation of continuous alumina scale,because it may compete with aluminum to absorb more oxygen.The result of oxidation kinetics in ODS iron-based alloy shows that the parabolic rate constant of the alumina oxide scale is 3–4 orders of magnitude lower than that of the scale mainly composed of iron and chromium oxide.
基金financially supported by Guangdong Innovative and Entrepreneurial Research Team Program ( No. 2013G061)the National Natural Science Foundation of China ( No. 51402055)
文摘This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of metal additives inhibited nitridation,while some metal additives such as Fe,Cu,Cr,and Ca increased nitrida—tion.Otherwise,the addition of metals might lead to the degradation of physical and mechanical properties of Si3N4.All the rare earth oxides,especially CeO2 and Eu2O3,showed nitridation enhancing effect.In addition,ZrO2 with small particle size showed a stronger enhancing effect.