期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
From 0D to 3D:Hierarchical structured high-performance free-standing silicon anodes based on binder-induced topological network architecture
1
作者 Yihong Tong Ruicheng Cao +4 位作者 Guanghui Xu Yifeng Xia Hongyuan Xu Hong Jin Hui Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期16-23,I0002,共9页
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ... Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges. 展开更多
关键词 Topological network SELF-STABILIZATION FLEXIBILITY FREE-STANDING silicon anode
下载PDF
Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries:Overcoming Challenges and Real-World Applications
2
作者 Mustafa Khan Suxia Yan +6 位作者 Mujahid Ali Faisal Mahmood Yang Zheng Guochun Li Junfeng Liu Xiaohui Song Yong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期341-384,共44页
Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material... Silicon(Si)has emerged as a potent anode material for lithium-ion batteries(LIBs),but faces challenges like low electrical conductivity and significant volume changes during lithiation/delithiation,leading to material pulverization and capacity degradation.Recent research on nanostructured Si aims to mitigate volume expansion and enhance electrochemical performance,yet still grapples with issues like pulverization,unstable solid electrolyte interface(SEI)growth,and interparticle resistance.This review delves into innovative strategies for optimizing Si anodes’electrochemical performance via structural engineering,focusing on the synthesis of Si/C composites,engineering multidimensional nanostructures,and applying non-carbonaceous coatings.Forming a stable SEI is vital to prevent electrolyte decomposition and enhance Li^(+)transport,thereby stabilizing the Si anode interface and boosting cycling Coulombic efficiency.We also examine groundbreaking advancements such as self-healing polymers and advanced prelithiation methods to improve initial Coulombic efficiency and combat capacity loss.Our review uniquely provides a detailed examination of these strategies in real-world applications,moving beyond theoretical discussions.It offers a critical analysis of these approaches in terms of performance enhancement,scalability,and commercial feasibility.In conclusion,this review presents a comprehensive view and a forward-looking perspective on designing robust,high-performance Si-based anodes the next generation of LIBs. 展开更多
关键词 silicon anode Energy storage NANOSTRUCTURE Prelithiation BINDER
下载PDF
A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode 被引量:6
3
作者 Hao Chen Zhenzhen Wu +4 位作者 Zhong Su Luke Hencz Su Chen Cheng Yan Shanqing Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期127-135,I0003,共10页
Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large... Binders could play crucial or even decisive roles in the fabrication of low-cost, stable and high-capacity electrodes. This is especially the case for the silicon (Si) anodes and sulfur (S) cathodes that undergo large volume change and active material loss in lithium-ion batteries during prolonged cycles. Herein, a hydrophilic polymer poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was explored as a dual-functional aqueous binder for the preparation of high-performance silicon anode and sulfur cathode. Benefiting from the dual functions of PMVEMA, i.e., the excellent dispersion ability and strong binding forces, the as-prepared electrodes exhibit improved capacity, rate capability and long-term cycling performance. In particular, the as-prepared Si electrode delivers a high initial discharge capacity of 1346.5 mAh g^(−1) at a high rate of 8.4 A/g and maintains 834.5 mAh g^(−1) after 300 cycles at 4.2 A/g, while the as-prepared S cathode exhibits enhanced cycling performance with high remaining discharge capacities of 663.4 mAh g^(−1) after 100 cycles at 0.2 C and 487.07 mAh g^(−1) after 300 cycles at 1 C, respectively. These encouraging results suggest that PMVEMA could be a universal binder to facilitate the green manufacture of both anode and cathode for high-capacity energy storage systems. 展开更多
关键词 Dual-functional Aqueous binder silicon anode Sulfur cathode Lithium-ion batteries Lithium-sulfur batteries
下载PDF
Sustainable silicon anodes facilitated via a double-layer interface engineering: Inner SiOx combined with outer nitrogen and boron co-doped carbon 被引量:2
4
作者 Jun Zhou Yao Lu +4 位作者 Lishan Yang Wenqiang Zhu Weifang Liu Yahui Yang Kaiyu Liu 《Carbon Energy》 SCIE CAS 2022年第3期399-410,共12页
Silicon-based(Si)materials are promising anodes for lithium-ion batteries(LIBs)because of their ultrahigh theoretical capacity of 4200 mA h g^(−1).However,commercial applications of Si anodes have been hindered by the... Silicon-based(Si)materials are promising anodes for lithium-ion batteries(LIBs)because of their ultrahigh theoretical capacity of 4200 mA h g^(−1).However,commercial applications of Si anodes have been hindered by their drastic volume variation(∼300%)and low electrical conductivity.Here,to tackle the drawbacks,a hierarchical Si anode with double-layer coatings of a SiOx inner layer and a nitrogen(N),boron(B)co-doped carbon(C-NB)outer layer is elaborately designed by copyrolysis of Si-OH structures and a H3BO_(3)-doped polyaniline polymer on the Si surface.Compared with the pristine Si anodes(7mA h g^(−1) at 0.5 A g^(−1) after 340 cycles and 340 mA h g^(−1) at 5 A g^(−1)),the modified Si-based materials(Si@SiOx@C-NB nanospheres)present su perior cycling stability(reversible 1301 mA h g^(−1) at 0.5 A g^(−1) after 340 cycles)as well as excellent rate capability(690mA h g^(−1) at 5 A g^(−1))when used as anodes in LIBs.The unique double-layer coating structure,in which the inner amorphous SiOx layer acts as a buffer matrix and the outer defect-rich carbon enhances the electron diffusion of the whole anode,makes it possible to de liver excellent electrochemical properties.These results indicate that our double-layer coating strategy is a promising approach not only for the devel opment of sustainable Si anodes but also for the design of multielement-doped carbon nanomaterials. 展开更多
关键词 boron-nitrogen co-doped carbon coating silicon anode stability WETTABILITY
下载PDF
Low‐temperature synthesis of graphitic carbon‐coated silicon anode materials 被引量:5
5
作者 Zheng Yan Huile Jin Juchen Guo 《Carbon Energy》 CAS 2019年第2期246-252,共7页
We report the synthesis of a high‐performance graphitic carbon‐coated silicon(Si@GC)composite material for lithium‐ion batteries via a scalable production route.Porous Si is produced from the magnesiothermic reduct... We report the synthesis of a high‐performance graphitic carbon‐coated silicon(Si@GC)composite material for lithium‐ion batteries via a scalable production route.Porous Si is produced from the magnesiothermic reduction of commercial silica(SiO2)precursor followed by low‐temperature graphitic carbon coating using glucose as the precursor.The obtained Si@GC composite achieves an excellent reversible specific capacity of 1195 mAh g−1 and outstanding cycle stability.The thick Si@GC anode(3.4 mg cm^−2)in full cells with commercial lithium iron phosphate cathode delivers a remarkable performance of 800 mAh g^−1 specific capacity and 2.7 mAh cm^−2 areal capacity as well as 93.6%capacity retention after 200 cycles. 展开更多
关键词 GLUCOSE graphitic carbon Li‐ion batteries silicon anode
下载PDF
Amylopectin from Glutinous Rice as a Sustainable Binder for High-Performance Silicon Anodes 被引量:1
6
作者 Han Yeu Ling Chengrui Wang +8 位作者 Zhong Su Su Chen Hao Chen Shangshu Qian Dong-Sheng Li Cheng Yan Milton Kiefel Chao Lai Shanqing Zhang 《Energy & Environmental Materials》 SCIE CSCD 2021年第2期263-268,共6页
Silicon(Si)has been investigated as a promising anode material because of its high theoretical capacity(4200 m Ah g^(-1)).However,silicon anode suffers from huge volume changes during repeated charge–discharge cycles... Silicon(Si)has been investigated as a promising anode material because of its high theoretical capacity(4200 m Ah g^(-1)).However,silicon anode suffers from huge volume changes during repeated charge–discharge cycles.In this work,inspired by a remarkable success of the glutinous rice mortar in the Great Wall with ca.2000-year history,amylopectin(AP),the key ingredient responsible for the strong bonding force,is extracted from glutinous rice and utilized as a flexible,aqueous,and resilient binder to address the most challenging drastic volume-expansion and pulverization issues of silicon anode.Additionally,the removal of toxic N-methyl-2-pyrrolidone(NMP)organic solvent makes the electrode fabrication process environmentally friendly and healthy.The as-prepared Si-AP electrode with 60 wt%of Si can uphold a high discharge capacity of 1517.9 m Ah g^(-1)at a rate of 0.1 C after 100 cycles.The cycling stability of the Si-AP has been remarkably improved in comparison with both traditional polyvinylidene fluoride(PVDF)and aqueous carboxymethylcellulose(CMC)binders.Moreover,when the content of silicon in the Si-AP electrode increases to 70 wt%,a high discharge capacity of 1463.1 m Ah g^(-1)can still be obtained after 50 cycles at 0.1°C.These preliminary results suggest that the sustainably available and environmentally benign amylopectin binders could be a promising choice for the construction of highly stable silicon anodes. 展开更多
关键词 AMYLOPECTIN BINDER glutinous rice silicon anode sticky rice
下载PDF
Monothetic and conductive network and mechanical stress releasing layer on micron-silicon anode enabling high-energy solid-state battery
7
作者 Xiang Han Min Xu +7 位作者 Lan-Hui Gu Chao-Fei Lan Min-Feng Chen Jun-Jie Lu Bi-Fu Sheng Peng Wang Song-Yan Chen Ji-Zhang Chen 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1017-1029,共13页
Silicon has ultrahigh capacity,dendrite-free alloy lithiation mechanism and low cost and has been regarded as a promising anode candidate for solid-state battery.Owing to the low infiltration of solid-state electrolyt... Silicon has ultrahigh capacity,dendrite-free alloy lithiation mechanism and low cost and has been regarded as a promising anode candidate for solid-state battery.Owing to the low infiltration of solid-state electrolyte(SSE),not the unstable solid-electrolyte interphase(SEI),but the huge stress during lithiation-and delithiation-induced particle fracture and conductivity lost tend to be the main issues.In this study,starting with micron-Si,a novel monothetic carbon conductive framework and a MgO coating layer are designed,which serve as electron pathway across the whole electrode and stress releasing layer,respectively.In addition,the in situ reaction between Si and SSE helps to form a LiF-rich and mechanically stable SEI layer.As a result,the mechanical stability and charge transfer kinetics of the uniquely designed Si anode are significantly improved.Consequently,high initial Coulombic efficiency,high capacity and durable cycling stability can be achieved by applying the Si@MgO@C anode in SSB.For example,high specific capacity of 3224.6 mAh·g^(-1)and long cycling durability of 200 cycles are achieved.This work provides a new concept for designing alloy-type anode that combines surface coating on particle and electrode structure design. 展开更多
关键词 Lithium-ion battery(LIB) Solid-state electrolyte(SSE) silicon anode Stress relief Coating
原文传递
Facilitating prelithiation of silicon carbon anode by localized high-concentration electrolyte for high-rate and long-cycle lithium storage
8
作者 Yuanxing Zhang Borong Wu +6 位作者 Jiaying Bi Xinyu Zhang Daobin Mu Xin-Yu Zhang Ling Zhang Yao Xiao Feng Wu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期216-233,共18页
The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Her... The commercialization of silicon-based anodes is affected by their low initial Coulombic efficiency(ICE)and capacity decay,which are attributed to the formation of an unstable solid electrolyte interface(SEI)layer.Herein,a feasible and cost-effective prelithiation method under a localized highconcentration electrolyte system(LHCE)for the silicon-silica/graphite(Si-SiO_(2)/C@G)anode is designed for stabilizing the SEI layer and enhancing the ICE.The thin SiO_(2)/C layers with-NH2 groups covered on nano-Si surfaces are demonstrated to be beneficial to the prelithiation process by density functional theory calculations and electrochemical performance.The SEI formed under LHCE is proven to be rich in ionic conductivity,inorganic substances,and flexible organic products.Thus,faster Li+transportation across the SEI further enhances the prelithiation effect and the rate performance of Si-SiO_(2)/C@G anodes.LHCE also leads to uniform decomposition and high stability of the SEI with abundant organic components.As a result,the prepared anode shows a high reversible specific capacity of 937.5 mAh g^(-1)after 400 cycles at a current density of 1 C.NCM 811‖Li-SSGLHCE full cell achieves a high-capacity retention of 126.15 mAh g^(-1)at 1 C over 750 cycles with 84.82%ICE,indicating the great value of this strategy for Si-based anodes in large-scale applications. 展开更多
关键词 localized high-concentration electrolytes prelithiation SEI layer silicon anode
下载PDF
High‑Performance Silicon‑Rich Microparticle Anodes for Lithium‑Ion Batteries Enabled by Internal Stress Mitigation 被引量:1
9
作者 Yao Gao Lei Fan +3 位作者 Rui Zhou Xiaoqiong Du Zengbao Jiao Biao Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期99-114,共16页
Si is a promising anode material for Li ion batteries because of its high specific capacity,abundant reserve,and low cost.However,its rate performance and cycling stability are poor due to the severe particle pulveriz... Si is a promising anode material for Li ion batteries because of its high specific capacity,abundant reserve,and low cost.However,its rate performance and cycling stability are poor due to the severe particle pulverization during the lithiation/delithiation process.The high stress induced by the Li concentration gradient and anisotropic deformation is the main reason for the fracture of Si particles.Here we present a new stress mitigation strategy by uniformly distributing small amounts of Sn and Sb in Si micron-sized particles,which reduces the Li concentration gradient and realizes an isotropic lithiation/delithiation process.The Si8.5Sn0.5Sb microparticles(mean particle size:8.22μm)show over 6000-fold and tenfold improvements in electronic conductivity and Li diffusivity than Si particles,respectively.The discharge capacities of the Si_(8.5)Sn_(0.5)Sb microparticle anode after 100 cycles at 1.0 and 3.0 A g^(-1)are 1.62 and 1.19 Ah g^(-1),respectively,corresponding to a retention rate of 94.2%and 99.6%,respectively,relative to the capacity of the first cycle after activation.Multicomponent microparticle anodes containing Si,Sn,Sb,Ge and Ag prepared using the same method yields an ultra-low capacity decay rate of 0.02%per cycle for 1000 cycles at 1 A g^(-1),corroborating the proposed mechanism.The stress regulation mechanism enabled by the industry-compatible fabrication methods opens up enormous opportunities for low-cost and high-energy-density Li-ion batteries. 展开更多
关键词 silicon anodes silicon microparticles Lithium-ion batteries Internal stress
下载PDF
Construction of dual crosslinked network binder via sequential ionic crosslinking for high-performance silicon anodes
10
作者 Ji-Na Wu Hong-Xu Chen +3 位作者 Chao Chen Hai-Dong Li Hong-Wen Zhang Bo Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第7期2238-2249,共12页
Nowadays,silicon has become a promising anode active material for lithium-ion batteries due to its high specific capacity.However,traditional binder materials cannot effectively restrain the volume expansion of silico... Nowadays,silicon has become a promising anode active material for lithium-ion batteries due to its high specific capacity.However,traditional binder materials cannot effectively restrain the volume expansion of silicon during lithiation/delithiation.Inspired by the growth process of climbing plants,we sequentially crosslink sodium alginate with calcium ions and hyperbranched polyethyleneimine to construct a dual crosslinked network binder.During the sequentially crosslinking,sodium alginate preferentially crosslinks with Ca^(2+)to form the"trellis"network,which restricts the free movement of hyperbranched polyethyleneimine and guides it,like"vine",to gradually anchor on the surrounding"trellis"through hydrogen and ionic bonding.In this dual crosslinked network,the ionic ally crosslinked sodium alginate maintains the anode structural integrity;the anchored hyperbranched polyethyleneimine forms strong multidimensional hydrogen bonds with silicon nanoparticles through its amino-rich branch chains;and the network utilizes the bonding reversibility of hydrogen and ionic bonds to repeatedly eliminate the mechanical stress and self-heal the structure damages caused by the volume change of silicon.Benefited from the multifunction of the dual crosslinked network,the silicon anode has achieved an excellent electrochemical performance with a specific capacity of 2403 mAh·g^(-1)at the current density of500 mA·g^(-1)after 100 cycles. 展开更多
关键词 Sodium alginate Hyperbranched polyethyleneimine(HBPEI) Ionic crosslinking BINDER silicon anode Lithium-ion battery(LIB)
原文传递
Realizing high-performance all-solid-state batteries with sulfide solid electrolyte and silicon anode:A review
11
作者 Xinyang Wang Kuang He +2 位作者 Siyuan Li Jiahui Zhang Yingying Lu 《Nano Research》 SCIE EI CSCD 2023年第3期3741-3765,共25页
Sulfide solid electrolyte(SE)is one of the most promising technologies for all-solid-state batteries(ASSBs)because of its high ionic conductivity and ductile mechanical properties.In order to further improve the energ... Sulfide solid electrolyte(SE)is one of the most promising technologies for all-solid-state batteries(ASSBs)because of its high ionic conductivity and ductile mechanical properties.In order to further improve the energy density of sulfide-based ASSBs and promote practical applications,silicon anodes with ultrahigh theoretical capacity(4,200 mAh·g^(−1))and rich resource abundance have broad commercial prospects.However,significant challenges including bulk instability of sulfide SEs and poor utilization of silicon materials have severely impeded the ASSBs from becoming viable.In this review,we first introduce the critical bulk properties of sulfide SEs and the most recent improving strategies covering the ionic conductivity,air stability,electrochemical window,mechanical stability,thermostability and solvent stability.Next,we introduce the main factors affecting the compatibility of silicon and sulfide SE,including the carbon’s effect,particle size of silicon,external pressure,silicon composite matrix and the depth of silicon’s lithiation.Finally,we discuss possible research directions in the future.We hope that this review can provide a comprehensive picture of the role of nanoscale approaches in recent advances in ASSBs with sulfide and silicon,as well as a source of inspiration for future research. 展开更多
关键词 all-solid-state battery sulfide solid electrolyte silicon anode nanoscale optimization
原文传递
Stress-dissipated conductive polymer binders for high-stability silicon anode in lithium-ion batteries
12
作者 Zhong Xu Xiang Chu +4 位作者 Keli Wang Haitao Zhang Zhongqian He Yanting Xie Weiqing Yang 《Journal of Materiomics》 SCIE CSCD 2023年第2期378-386,共9页
Silicon-based anodes with high theoretical capacity have intriguing potential applications for high energy density lithium-ion batteries(LIBs),while suffer from immense volumetric change and brittle solidstate electro... Silicon-based anodes with high theoretical capacity have intriguing potential applications for high energy density lithium-ion batteries(LIBs),while suffer from immense volumetric change and brittle solidstate electrolyte interface that causes collapse of electrodes.Here,a stress-dissipated conductive polymer binder(polyaniline with citric acid,PC)is developed to enhance the mechanical electrochemical performance between Si nanoparticles(SiNPs)and binders.Benefiting from the stable triangle network node of citric acid and a considerable distributed of hydroxyl groups,the PC binder can effectively dissipate the stress from SiNPs,thus providing an excellent cyclic stability of Si anodes.Both experimental results and theoretical calculation demonstrate the enhanced adhesion between binders and SiNPs could bond the particles tightly to form a robust electrode.The as-fabricated Si anode exhibits outstanding structural stability upon long-term cycles that exhibit a highly reversible capability of 1021 mA·h·g^(-1)over 500 cycles at a current density of 0.5 C(1 C¼4200mA·g^(-1)).Evidently,this stressdissipated binder design will provide a promising route to achieve long-life Si-based LIBs. 展开更多
关键词 Conductive polymer silicon anode BINDER Mechanical electrochemistry Lithium-ion batteries
原文传递
In Situ Formation of LiF-Rich Carbon Interphase on Silicon Particles for Cycle-Stable Battery Anodes
13
作者 Yang Ni Shuibin Tu +3 位作者 Renmin Zhan Zhao Cai Xiaohong Wang Yongming Sun 《Transactions of Tianjin University》 EI CAS 2023年第2期101-109,共9页
Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at ... Silicon(Si)is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density.However,Si anodes suff er from severe interfacial chemistry issues,such as side reactions at the electrode/electrolyte interface,leading to poor electrochemical cycling stability.Herein,we demonstrate the fabrication of a conformal fl uorine-containing carbon(FC)layer on Si particles(Si-FC)and its in situ electrochemical conversion into a LiF-rich carbon layer above 1.5 V(vs.Li^(+)/Li).The as-formed LiF-rich carbon layer not only isolates the active Si and electrolytes,leading to the suppression of side reactions,but also induces the formation of a robust solid-electrolyte interface(SEI),leading to the stable interfacial chemistry of as-designed Si-FC particles.The Si-FC electrode has a high initial Coulombic effi ciency(CE)of 84.8%and a high reversible capacity of 1450 mAh/g at 0.4 C(1000 mA/g)for 300 cycles.In addition,a hybrid electrode consisting of 85 wt%graphite and 15 wt%Si-FC,and mass 2.3 mg/cm^(2) loading delivers a high areal capacity of 2.0 mAh/cm^(2) and a high-capacity retention of 93.2%after 100 cycles,showing the prospects for practical use. 展开更多
关键词 Lithium-ion batteries silicon anode LiF-rich carbon interphase Capacity Cycling stability
下载PDF
High mechanical strength Si anode synthesis with interlayer bonded expanded graphite structure for lithium-ion batteries
14
作者 Wenhui Lai Jong Hak Lee +8 位作者 Lu Shi Yuqing Liu Yanhui Pu Yong Kang Ong Carlos Limpo Ting Xiong Yifan Rao Chorng Haur Sow Barbaros Ozyilmaz 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期253-263,I0007,共12页
Despite advancements in silicon-based anodes for high-capacity lithium-ion batteries,their widespread commercial adoption is still hindered by significant volume expansion during cycling,especially at high active mass... Despite advancements in silicon-based anodes for high-capacity lithium-ion batteries,their widespread commercial adoption is still hindered by significant volume expansion during cycling,especially at high active mass loadings crucial for practical use.The root of these challenges lies in the mechanical instability of the material,which subsequently leads to the structural failure of the electrode.Here,we present a novel synthesis of a composite combining expanded graphite and silicon nanoparticles.This composite features a unique interlayer-bonded graphite structure,achieved through the application of a modified spark plasma sintering method.Notably,this innovative structure not only facilitates efficient ion and electron transport but also provides exceptional mechanical strength(Vickers hardness:up to658 MPa,Young's modulus:11.6 GPa).This strength effectively accommodates silicon expansion,resulting in an impressive areal capacity of 2.9 mA h cm^(-2)(736 mA h g^(-1)) and a steady cycle life(93% after 100cycles).Such outsta nding performance is paired with features appropriate for large-scale industrial production of silicon batteries,such as active mass loading of at least 3.9 mg cm^(-2),a high-tap density electrode material of 1.68 g cm^(-3)(secondary clusters:1.12 g cm^(-3)),and a production yield of up to 1 kg per day. 展开更多
关键词 Lithium-ion battery silicon anode Spark plasma sintering Interlayer bonding Mechanical strength Tap density
下载PDF
Multilevel carbon architecture of subnanoscopic silicon for fast‐charging high‐energy‐density lithium‐ion batteries
15
作者 Meisheng Han Yongbiao Mu +2 位作者 Lei Wei Lin Zeng Tianshou Zhao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期256-268,共13页
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p... Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C. 展开更多
关键词 fast charging high energy densities lithium‐ion batteries multilevel carbon architecture subnanoscopic silicon anode
下载PDF
Interfacial design of silicon/carbon anodes for rechargeable batteries:A review 被引量:3
16
作者 Quanyan Man Yongling An +3 位作者 Chengkai Liu Hengtao Shen Shenglin Xiong Jinkui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期576-600,I0014,共26页
Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloy... Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electrochemical performance.Thus,carbon(C)materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems.This review focuses on current status in the exploration of Si/C anodes,including the lithiation mechanism and solid electrolyte interface formation,various carbon sources in Si/C anodes,such as traditional carbon sources(graphite,pitch,biomass),and novel carbon sources(MXene,graphene,MOFs-derived carbon,graphdiyne,etc.),as well as interfacial bonding modes of Si and C in the Si/C anodes.Finally,we summarize and prospect the selection of carbonaceous materials,structural design and interface control of Si/C anodes,and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al.This review will help researchers in the design of novel Si/C anodes for rechargeable batteries. 展开更多
关键词 silicon/carbon anodes Lithium-ion batteries Interfacial reaction Carbon sources Interface bonding
下载PDF
Crosslinked carboxymethyl cellulose-sodium borate hybrid binder for advanced silicon anodes in lithium-ion batteries 被引量:5
17
作者 Li Zhang Yun Ding Jiangxuan Song 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第12期1773-1776,共4页
Silicon anodes have drawn ever-increasing attention in lithium-ion batteries(LIBs) owing to their extremely high theoretical capacity and abundance in the earth. Despite promising advantages, the wide use of silicon a... Silicon anodes have drawn ever-increasing attention in lithium-ion batteries(LIBs) owing to their extremely high theoretical capacity and abundance in the earth. Despite promising advantages, the wide use of silicon anodes in LIBs is highly hindered by their fast capacity fading and low Coulombic efficiency arising from their substantial volumetric variation(>300%). Herein, we report a novel aqueous hybrid gel binder for silicon anodes via crosslinking sodium carboxymethyl cellulose(NaCMC) by an inorganic crosslinker-sodium borate. Not only this gel polymer binder can chemically bond to silicon nanoparticle, but also the deformable framework of this crosslinked binder is capable of maintaining electrode integrity, thus buffering dramatic volume change of silicon. Consequently, the silicon anode with this gel binder exhibits good cycle life(1211.5 mAh/g after 600 cycles) and high initial Coulombic efficiency(88.95%). 展开更多
关键词 Lithium-ion batteries silicon anodes Sodium carboxymethyl cellulose BINDER CROSSLINKING
原文传递
Enhanced ion conductivity and electrode–electrolyte interphase stability of porous Si anodes enabled by silicon nitride nanocoating for high-performance Li-ion batteries 被引量:3
18
作者 Shixiong Mei Siguang Guo +7 位作者 Ben Xiang Jiaguo Deng Jijiang Fu Xuming Zhang Yang Zheng Biao Gao Paul K Chu Kaifu Huo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期616-625,I0017,共11页
Silicon (Si) is a promising anode material for next-generation high-energy lithium-ion batteries (LIBs) due to its high capacity.However,the large volumetric expansion,poor ion conductivity and unstable solid electrol... Silicon (Si) is a promising anode material for next-generation high-energy lithium-ion batteries (LIBs) due to its high capacity.However,the large volumetric expansion,poor ion conductivity and unstable solid electrolyte interface (SEI) lead to rapid capacity fading and low rate performance.Herein,we report Si nitride (SiN) comprising stoichiometric Si_(3)N_(4) and Li-active anazotic SiN_(x) coated porous Si (p-Si@SiN)for high-performance anodes in LIBs.The ant-nest-like porous Si consisting of 3D interconnected Si nanoligaments and bicontinuous nanopores prevents pulverization and accommodates volume expansion during cycling.The Si_(3)N_(4) offers mechanically protective coating to endow highly structural integrity and inhibit superfluous formation of SEI.The fast ion conducting Li_(3)N generated in situ from lithiation of active SiN_(x) facilitates Li ion transport.Consequently,the p-Si@SiN anode has appealing electrochemical properties such as a high capacity of 2180 mAh g^(-1)at 0.5 A g^(-1) with 84%capacity retention after 200cycles and excellent rate capacity with discharge capacity of 721 mAh g^(-1) after 500 cycles at 5.0 A g^(-1).This work provides insights into the rational design of active/inactive nanocoating on Si-based anode materials for fast-charging and highly stable LIBs. 展开更多
关键词 silicon anode Ion conductivity Si_(3)N_(4) SiN_(x) Lithium-ion battery
下载PDF
Correlation between the physical parameters and the electrochemical performance of a silicon anode in lithium-ion batteries 被引量:3
19
作者 Guobin Zhu Yan Wang +2 位作者 Siming Yang Qunting Qu Honghe Zheng 《Journal of Materiomics》 SCIE EI 2019年第2期164-175,共12页
Lithium-ion battery anode used as silicon particles were obtained from different major suppliers,and they were characterized by different spectroscopic techniques and evaluated by electrochemical experiments.Correlati... Lithium-ion battery anode used as silicon particles were obtained from different major suppliers,and they were characterized by different spectroscopic techniques and evaluated by electrochemical experiments.Correlations between the key physical parameters and electrochemical properties of the silicon particles were investigated.Silicon particle size,surface oxygen content,-OH content and physical appearance are found to strongly influence the electrochemical properties of the Si anode.The particle size of 100 nm has great promise for the practical application of Si nanoparticles in the lithium-ion battery industry.An inverse correlation between the oxygen content and the reversible capacity or first coulombic efficiency was obtained.The-OH content by surface treatment contributes to enhanced cycling stability by the improved affinity between the Si particle and the water-soluble binder.Spherical Si particles perform better compared to irregular particles,and agglomeration dramatically decreases the cycling stability of the Si anode.Among the investigated Si particles,the sample that exhibited a reversible capacity of more than 2500 mAh g^(-1),a first coulombic efficiency of 89.26%and an excellent cycling stability,has great potential for use in the battery industry. 展开更多
关键词 Lithium ionbatteries silicon anode Physical parameters Particle size Surface condition
原文传递
Performance of n-type silicon/silver composite anode material in lithium ion batteries: A study on effect of work function matching degree
20
作者 徐国军 金晨鑫 +6 位作者 孔凯捷 杨西西 岳之浩 李晓敏 孙福根 黄海宾 周浪 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期607-611,共5页
In this paper, two types of silicon(Si) particles ball-milled from n-type Si wafers, respectively, with resistivity values of 1 Ω·cm and 0.001 Ω·cm are deposited with silver(Ag). The Ag-deposited n-typ... In this paper, two types of silicon(Si) particles ball-milled from n-type Si wafers, respectively, with resistivity values of 1 Ω·cm and 0.001 Ω·cm are deposited with silver(Ag). The Ag-deposited n-type 1-Ω·cm Si particles(nl-Ag) and Ag-deposited n-type 0.001-Ω·cm Si particles(n0.001-Ag) are separately used as an anode material to assemble coin cells,of which the electrochemical performances are investigated. For the matching of work function between n-type 1-Ω·cm Si(nl) and Ag, nl-Ag shows discharge specific capacity of up to 683 mAh·g^-1 at a current density of 8.4 A·g^-1, which is40% higher than that of n0.001-Ag. Furthermore, the resistivity of nl-Ag is lower than half that of n0.001-Ag. Due to the mismatch of work function between n-type 0.001-Ω·cm Si(n0.001) and Ag, the discharge specific capacity of n0.001-Ag is 250.2 mAh·g^-1 lower than that of nl-Ag after 100 cycles. 展开更多
关键词 lithium ion battery silicon anode materials work function matching CONTACTS
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部