The combination of SiC quantum dots sensitized inverse opal TiO_(2) photocatalyst is designed in this work and then applied in wastewater purification under simulated sunlight.From various spectroscopic techniques,it ...The combination of SiC quantum dots sensitized inverse opal TiO_(2) photocatalyst is designed in this work and then applied in wastewater purification under simulated sunlight.From various spectroscopic techniques,it is found that electrons transfer directionally from SiC quantum dots to inverse opal TiO_(2),and the energy difference between their conduction/valence bands can reduce the recombination rate of photogenerated carriers and provide a pathway with low interfacial resistance for charge transfer inside the composite.As a result,a typical type-II mechanism is proved to dominate the photoinduced charge transfer process.Meanwhile,the composite achieves excellent photocatalytic performances(the highest apparent kinetic constant of 0.037 min^(-1)),which is 6.2 times(0.006 min^(-1))and 2.1 times(0.018 min^(-1))of the bare inverse opal TiO_(2) and commercial P25 photocatalysts.Therefore,the stability and non-toxicity of SiC quantum dots sensitized inverse opal TiO_(2) composite enables it with great potential in practical photocatalytic applications.展开更多
基金partially supported by the National Natural Science Foundation of China(Grant Nos.51402161,51373086,21606140,and 21776147)the Natural Science Foundation of Shandong Province(Grant No.ZR2021YQ32)the Taishan Scholar Project of Shandong Province(tsqn201909117).
文摘The combination of SiC quantum dots sensitized inverse opal TiO_(2) photocatalyst is designed in this work and then applied in wastewater purification under simulated sunlight.From various spectroscopic techniques,it is found that electrons transfer directionally from SiC quantum dots to inverse opal TiO_(2),and the energy difference between their conduction/valence bands can reduce the recombination rate of photogenerated carriers and provide a pathway with low interfacial resistance for charge transfer inside the composite.As a result,a typical type-II mechanism is proved to dominate the photoinduced charge transfer process.Meanwhile,the composite achieves excellent photocatalytic performances(the highest apparent kinetic constant of 0.037 min^(-1)),which is 6.2 times(0.006 min^(-1))and 2.1 times(0.018 min^(-1))of the bare inverse opal TiO_(2) and commercial P25 photocatalysts.Therefore,the stability and non-toxicity of SiC quantum dots sensitized inverse opal TiO_(2) composite enables it with great potential in practical photocatalytic applications.