期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Modified silicon carbide whisker reinforced polybenzimidazole used for high temperature proton exchange membrane 被引量:1
1
作者 Yangben Cai Zhouying Yue +1 位作者 Qianlu Jiang Shiai Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期820-825,共6页
Polybenzimidazole containing ether bond(OPBI) was reinforced with silicon carbide whisker(m Si C) modified by 3-aminopropyltriethoxysilane(KH550), and then doped with phosphoric acid(PA) to obtain OPBI/m Si C/... Polybenzimidazole containing ether bond(OPBI) was reinforced with silicon carbide whisker(m Si C) modified by 3-aminopropyltriethoxysilane(KH550), and then doped with phosphoric acid(PA) to obtain OPBI/m Si C/PA membranes. These OPBI/m Si C/PA membranes have excellent mechanical strength and oxidative stability and can be used for high temperature proton exchange membrane(HT-PEM). The tensile strength of OPBI/m Si C/PA membranes ranges from 27.3 to 36.8 MPa, and it increases at first and then decreases with the increase of m Si C content. The high m Si C content and PA doping level contribute to improving the proton conductivity of membranes. The proton conductivity of PBI/m Si C-10/PA membrane is 27.1 m S cm-1 at 170℃ without humidity, with an increase of 55.7% compared with that of OPBI/PA membrane. These excellent properties make OPBI/m Si C/PA membranes promising membrane materials for HT-PEM applications. 展开更多
关键词 Polybenzimidazole silicon carbide whisker Phosphoric acid doping Proton exchange membrane Proton conductivity
下载PDF
Holmium-doped Porous Silicon Prepared by a New Electrochemical Approach and Its Photoluminescence
2
作者 龚孟濂 曾春莲 +3 位作者 黄伟国 谢国伟 郑婉华 廉德亮 《Journal of Rare Earths》 SCIE EI CAS CSCD 1998年第3期13-18,共6页
Porous silicon(PS) was found to emit visible luminescence at room temperature. This phenomenon implies a potential application of silicon in optoelectronics. The luminescence of PS can be improved by doping with rare ... Porous silicon(PS) was found to emit visible luminescence at room temperature. This phenomenon implies a potential application of silicon in optoelectronics. The luminescence of PS can be improved by doping with rare earth elements. A new electrochemical doping approach, constant potential electrolysis, and a new electrolyte system for doping of porous silicon with holmium were reported. By this approach and system, the doping products were well controlled, and Ho doped PS(HDPS) was found to emit much intenser visible photoluminescence with blue shift in wavelength and higher luminescence stability at room temperature than that for corresponding PS wafer. The effects of various kinds of holmium compounds, solvents, applied voltage, concentration of holmium nitrate and doping time on photoluminescence of HDPS were investigated, and the optimum doping conditions were fixed. The luminescence mechanisms for PS and HDPS were discussed. 展开更多
关键词 Rare earths Holmium doped porous silicon Constant Potential electrolysis PHOTOLUMINESCENCE
下载PDF
Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition
3
作者 王金良 毋二省 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第3期848-853,共6页
The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si'H films are carefully and systematic... The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si'H films are carefully and systematically characterized by using high resolution electron microscopy (HREM), Raman scattering, x-ray diffraction (XRD), Auger electron spectroscopy (AES), and resonant nucleus reaction (RNR). The results show that as the doping concentration of PH3 increases, the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously. For the B-doped samples, as the doping concentration of B2H6 increases, no obvious change in the value of d is observed, but the value of Xc is found to decrease. This is especially apparent in the case of heavy B2H6 doped samples, where the films change from nanocrystalline to amorphous. 展开更多
关键词 PECVD doped hydrogenated nanocrystalline silicon film MICROSTRUCTURE
下载PDF
FORMATION AND PROPERTIES 0F POROUS SILICON LAYER ON HEAVILY DOPED n-Si
4
作者 Rui Bao JIA Shi Xun WANG Guo Xheng LI Department of Chemistry, Shandong University, Jinan 250100 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第7期657-658,共2页
The anodic voltammetric curves of heavily doped n-Si in HF solution, on which three different regions have emerged, and were plotted, A porous silicon layer with fine morphology was formed in linear region.
关键词 PSL HF FORMATION AND PROPERTIES 0F POROUS silicon LAYER ON HEAVILY DOPED n-Si
下载PDF
Numerical simulation of the effect of gold doping on the resistance to neutron irradiation of silicon diodes
5
作者 K.Bekhouche N.Sengouga B.K.Jones 《Journal of Semiconductors》 EI CAS CSCD 2015年第1期47-51,共5页
We have carried out a numerical simulation of the effect of gold doping on the electrical characteristics of long silicon diodes exposed to neutron irradiation. The aim is to investigate the effect of gold on the hard... We have carried out a numerical simulation of the effect of gold doping on the electrical characteristics of long silicon diodes exposed to neutron irradiation. The aim is to investigate the effect of gold on the hardness of the irradiated diodes. The reverse current voltage and capacitance voltage characteristics of doped and undoped diodes are calculated for different irradiation doses. The leakage current and the effective doping density are extracted from these two characteristics respectively. The hardness of the diodes is evaluated from the evolution of the leakage current and the effective doping density with irradiation doses. It was found that diodes doped with gold are less sensitive to irradiation than undoped ones. Thus gold appears to stabilise the electrical properties on irradiation. The conduction mechanism is studied by the evolution of the current with temperature. The evaluated activation energy indicates that as the gold doping or irradiation dose increases, the current switches from the basic diffusion to the generation-recombination process, and that it can even become ohmic for very high gold densities or irradiation doses. 展开更多
关键词 silicon diodes gold doping numerical simulation
原文传递
Answer to comments on “Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition”
6
作者 Leifeng Chen Hong He 《Journal of Semiconductors》 EI CAS CSCD 2017年第4期63-67,共5页
Here,we reply to comments by Valentic et al.on our paper published in Electrochimica Acta(2014,130:279).They commented that Au nanoparticles played the dominant role on the whole cell's performances in our improve... Here,we reply to comments by Valentic et al.on our paper published in Electrochimica Acta(2014,130:279).They commented that Au nanoparticles played the dominant role on the whole cell's performances in our improved graphene/Si solar cell.We argued that our devices are Au-doped graphene/n-Si Schottky barrier devices,not Au nanoparticles(film)/n-Si Schottky barrier devices.During the doping process,most of the Au nanopatricles covered the surfaces of the graphene.Schottky barriers between doped graphene and n-Si dominate the total cells properties.Through doping,by adjusting and tailoring the Fermi level of the graphene,the Fermi level of n-Si can be shifted down in the graphene/Si Schottky barrier cell.They also argued that the instability of our devices were related to variation in series resistance reduced at the beginning due to slightly lowered Fermi level and increased at the end by the serf-compensation by deep in-diffusion of Au nanoparticles.But for our fabricated devices,we know that an oxide layer covered the Si surface,which makes it difficult for the Au ions to diffuse into the Si layer,due to the continuous growth of SiO2 layer on the Si surface which resulted in series resistance decreasing at first and increasing in the end. 展开更多
关键词 solar cell graphene silicon chemical doping Au nanoparticles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部