期刊文献+
共找到1,650篇文章
< 1 2 83 >
每页显示 20 50 100
Smooth Surface Morphology of Hydrogenated Amorphous Silicon Film Prepared by Plasma Enhanced Chemical Vapor Deposition 被引量:1
1
作者 闫许 冯飞 +1 位作者 张进 王跃林 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第5期569-575,共7页
Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness... Influence of the parameters of plasma enhanced chemical vapor deposition (PECVD) on the surface morphology of hydrogenated amorphous silicon (α-Si:H) film was investigated. The root-mean-square (RMS) roughness of the film was measured by atomic force microscope (AFM) and the relevant results were analyzed using the surface smoothing mechanism of film deposition. It is shown that an α-Si:H film with smooth surface morphology can be obtained by increasing the PH3/N2 gas flow rate for 10% in a high frequency (HF) mode. For high power, however, the surface morphology of the film will deteriorate when the Sill4 gas flow rate increases. Furthermore, optimized parameters of PECVD for growing the film with smooth surface were obtained to be Sill4:25 sccm (standard cubic centimeters per minute), At: 275 sccm, 10%PH3/N2:2 sccm, HF power: 15 W, pressure: 0.9 Torr and temperature: 350℃. In addition, for in thick fihn deposition on silicon substrate, a N20 and NH3 preprocessing method is proposed to suppress the formation of gas bubbles. 展开更多
关键词 hydrogenated amorphous silicon film surface roughness plasma enhancedchemical vapor deposition
下载PDF
Fabrication of seeded substrates for layer transferrable silicon films
2
作者 李纪周 张伟 +4 位作者 鄢靖源 王聪 陈宏飞 陈小源 刘东方 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期450-454,共5页
The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous... The layer transfer process is one of the most promising methods for low-cost and highly-efficient solar cells, in which transferrable mono-crystalline silicon thin wafers or films can be produced directly from gaseous feed-stocks. In this work, we show an approach to preparing seeded substrates for layer-transferrable silicon films. The commercial silicon wafers are used as mother substrates, on which periodically patterned silicon rod arrays are fabricated, and all of the surfaces of the wafers and rods are sheathed by thermal silicon oxide. Thermal evaporated aluminum film is used to fill the gaps between the rods and as the stiff mask, while polymethyl methacrylate (PMMA) and photoresist are used as the soft mask to seal the gap between the filled aluminum and the rods. Under the joint resist of the stiff and soft masks, the oxide on the rod head is selectively removed by wet etching and the seed site is formed on the rod head. The seeded substrate is obtained after the removal of the masks. This joint mask technique will promote the endeavor of the exploration of mechanically stable, unlimitedly reusable substrates for the kerfless technology. 展开更多
关键词 seeded substrate layer transfer joint mask FILLER silicon film
下载PDF
Surface morphology and impurity distribution of electron beam recrystallized silicon films on low cost substrates for solar cell absorber
3
作者 GROMBALL F MüLLER J 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期195-200,共6页
A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface ... A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification. 展开更多
关键词 polycrystalline silicon film solar cell recrystallization energy surface morphology OUTGASSING
下载PDF
Columnar growth of crystalline silicon films on aluminium-coated glass by inductively coupled plasma CVD at room temperature
4
作者 王金晓 秦艳丽 +4 位作者 闫恒庆 高平奇 栗军帅 尹旻 贺德衍 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第2期773-777,共5页
Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spec... Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. It was found that the films are composed of columnar grains and their surfaces show a random and uniform distribution of silicon nanocones. Such a microstructure is highly advantageous to the application of the films in solar cells and electron emission devices. Field electron emission measurement of the films demonstrated that the threshold field strength is as low as -9.8V/μm and the electron emission characteristic is reproducible. In addition, a mechanism is suggested for the columnar growth of crystalline silicon films on aluminium-coated glass at room temperature. 展开更多
关键词 surface structure columnar growth inductively coupled plasma CVD crystalline silicon films
下载PDF
High Growth Rate of Microcrystalline Silicon Films Prepared by ICP-CVD with Internal Low Inductance Antennas
5
作者 陈玖香 王伟仲 +1 位作者 Jyh Shiram CHERNG 陈强 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第5期502-505,共4页
The plasma parameters in ICP-CVD system with internal low inductance antennas(LIA) were diagnosed by Langmuir probe.The ions density(Ni) reached 1011-1012 cm-3,and the electron temperature(Te) was below ca.2 eV,... The plasma parameters in ICP-CVD system with internal low inductance antennas(LIA) were diagnosed by Langmuir probe.The ions density(Ni) reached 1011-1012 cm-3,and the electron temperature(Te) was below ca.2 eV,which was slightly decreased with applied power.A p-type hydrogenated microcrystalline silicon(μc-Si:H) film was prepared on glass substrate.After optimization of the processing parameters in flow ratio of SiH4:B2H6:H2,a high quality μc-Si:H film with deposition rate above 1.0 nm/s was achieved in this work. 展开更多
关键词 ICP-CVD plasma parameters microcrystalline silicon films deposition rate
下载PDF
Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition
6
作者 王金良 毋二省 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第3期848-853,共6页
The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si'H films are carefully and systematic... The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si'H films are carefully and systematically characterized by using high resolution electron microscopy (HREM), Raman scattering, x-ray diffraction (XRD), Auger electron spectroscopy (AES), and resonant nucleus reaction (RNR). The results show that as the doping concentration of PH3 increases, the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously. For the B-doped samples, as the doping concentration of B2H6 increases, no obvious change in the value of d is observed, but the value of Xc is found to decrease. This is especially apparent in the case of heavy B2H6 doped samples, where the films change from nanocrystalline to amorphous. 展开更多
关键词 PECVD doped hydrogenated nanocrystalline silicon film MICROSTRUCTURE
下载PDF
STRUCTURAL PROPERTIES INVESTIGATION ON MICROCRYSTALLINE SILICON FILMS DEPOSITED WITH VHF-PECVD TECHNIQUE
7
作者 H.D.Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第3期223-227,共5页
Raman scattering spectroscopy and scanning electron microscopy (SEM) techniques were used to determine the structural properties of two typical series of microc rystalline silicon (μc-Si:H) films deposited at differe... Raman scattering spectroscopy and scanning electron microscopy (SEM) techniques were used to determine the structural properties of two typical series of microc rystalline silicon (μc-Si:H) films deposited at different VHF plasma power and different working gas pressure by very high frequency plasma enhanced chemical v apor deposition (VHF-PECVD) technique. Raman spectra measurements show that both crystalline volume fraction Xc and average grain size d of μc-Si : H films ar e strongly affected by the two deposition conditions and are more sensitive to w orking gas pressure than VHF plasma power. SEM characterizations have further co nfirmed that VHF plasma power and working gas pressure could clearly enhance the surface roughness of μc-Si : H films ascribing to polymerization reactions, w hich is also more sensitive to working gas pressure than VHF plasma power. 展开更多
关键词 VHF-PECVD microcrystalline silicon film structural property
下载PDF
Room Temperature Growth of Hydrogenated Amorphous Silicon Films by Dielectric Barrier Discharge Enhanced CVD
8
作者 郭玉 张溪文 韩高荣 《Plasma Science and Technology》 SCIE EI CAS CSCD 2007年第2期177-180,共4页
Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room te... Hydrogenated amorphous silicon (a-Si: H) films were deposited on Si (100) and glass substrates by dielectric barrier discharge enhanced chemical vapour deposition (DBD-CVD) in (SiH4+H2) atmosphere at room temperature. Results of the thickness measurement, SEM (scanning electron microscope), Raman, and FTIR (Fourier transform infrared spectroscopy) show that with the increase in the applied peak voltage, the deposition rate and network order of the films increase, and the hydrogen bonding configurations mainly in di-hydrogen (Si-H2) and poly hydrogen (SiH2)n are introduced into the films. The UV-visible transmission spectra show that with the decrease in SiH4/ (SiHn+H2) the thin films' band gap shifts from 1.92 eV to 2.17 eV. These experimental results are in agreement with the theoretic analysis of the DBD discharge. The deposition of a-Si: H films by the DBD-CVD method as reported here for the first time is attractive because it allows fast deposition of a-Si: H films on large-area low-melting-point substrates and requires only a low cost of production without additional heating or pumping equipment. 展开更多
关键词 DBD-CVD room temperature hydrogenated amorphous silicon films
下载PDF
The model developed for stress-induced structural phase transformations of micro-crystalline silicon films
9
作者 Chang-Fu Han Jen-Fin Lin 《Nano-Micro Letters》 SCIE EI CAS 2010年第2期68-73,共6页
The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critic... The nanoindentations were applied to island-shaped regions with metal-induced Si crystallizations. The experimental stress-strain relationship is obtained from the load-depth profile in order to investigate the critical stresses arising at various phase transitions. The stress and strain values at various indentation depths are applied to determine the Gibbs free energy at various phases. The intersections of the Gibbs free energy lines are used to determine the possible paths of phase transitions arising at various indentation depths. All the critical contact stresses corresponding to the various phase transitions at four annealing temperatures were found to be consistent with the experimental results. 展开更多
关键词 silicon films Phase transitions Stress-strain model
下载PDF
SUBSTRATE EFFECT ON HYDROGENATED MICROCRYSTALLINE SILICON FILMS DEPOSITED WITH VHF-PECVD TECHNIQUE
10
作者 H.D. Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第4期295-300,共6页
Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high... Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique. Using the Raman spectra, the values of crystalline volume fraction Xc and average grain size d are 86%, 12.3nm; 65%, 5.45nm; and 38%, 4.05nm, for single crystalline silicon wafer, coming 7059 glass, and general optical glass substrates, respectively. The SEM images further demonstrate the substrate effect on the film surface roughness. For the single crystalline silicon wafer and Coming 7059 glass, the surfaces of the μc-Si:H films are fairly smooth because of the homogenous growth or h'ttle lattice mismatch. But for general optical glass, the surface of the μ-Si: H film is very rough, thus the growing surface roughness affects the crystallization process and determines the average grain size of the deposited material. Moreover, with the measurements of thickness, photo and dark conductivity, photosensitivity and activation energy, the substrate effect on the deposition rate, optical and electrical properties of the μc-Si:H thin films have also been investigated. On the basis of the above results, it can be concluded that the substrates affect the initial growing layers acting as a seed for the formation of a crystalline-like material and then the deposition rates, optical and electrical properties are also strongly influenced, hence, deposition parameter optimization is the key method that can be used to obtain a good initial growing layer, to realize the deposition of μc-Si:H films with device-grade quality on cheap substrates such as general glass. 展开更多
关键词 hydrogenated microcrystalline silicon film VHF-PECVD (very high frequency plasma-enhanced chemical vapor deposition) substrate effect
下载PDF
Study on stability of hydrogenated amorphous silicon films 被引量:2
11
作者 朱秀红 陈光华 +5 位作者 张文理 丁毅 马占洁 胡跃辉 何斌 荣延栋 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第11期2348-2351,共4页
Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour d... Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results. 展开更多
关键词 hydrogenated amorphous silicon (a-Si:H) films PHOTOSENSITIVITY STABILITY microstructure hydrogen elimination (HE) model
下载PDF
The study of amorphous incubation layers during the growth of microcrystalline silicon films under different deposition conditions 被引量:1
12
作者 陈永生 徐艳华 +3 位作者 谷锦华 卢景霄 杨仕娥 郜小勇 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期567-571,共5页
The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated ... The structural un-uniformity of microcrystalline silicon, thin film, amorphous incubation layerc-Si:H films prepared using very high frequency plasma-enhanced chemical vapour deposition method has been investigated by Raman spectroscopy, spectroscopic ellipsometer and atomic force mi- croscopy. It was found that the formation of amorphous incubation layer was caused by the back diffusion of SiH4 and the amorphous induction of glass surface during the initial ignition process, and growth of the incubation layer can be suppressed and uniform μc-Si:H phase is generated by the application of delayed initial SiH4 density and silane profiling methods. 展开更多
关键词 microcrystalline silicon thin film amorphous incubation layer
下载PDF
Analysis of the application of the laser equipment in the production line of the amorphous silicon film solar cells
13
作者 Huang Xinhua Mei Lixue 《International English Education Research》 2014年第4期8-10,共3页
关键词 太阳能电池生产线 薄膜太阳能电池 激光设备 无定形硅 应用 非晶硅薄膜 激光划片 精确性
下载PDF
Thermoelectric effect of silicon films prepared by aluminum-induced crystallization
14
作者 Qing-run Hou Bing-fu Gu +1 位作者 Yi-bao Chen Yuan-jin He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第10期957-963,共7页
Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The ... Aluminum-induced crystallized silicon films were prepared on glass substrates by magnetron sputtering. Aluminum was added in the silicon films intermittently by the regular pulse sputtering of an aluminum target. The amount of aluminum in the silicon films can be controlled by regulating the aluminum sputtering power and the sputtering time of the undoped silicon layer; thus, the Seebeck coefficient and electrical resistivity of the polyerystaUine silicon films can be adjusted. It is found that, when the sputtering power ratio of aluminum to silicon is 16%, both the Seebeck coefficient and the electrical resistivity decrease with the increasing amount of aluminum as expected; the Seebeck coefficient and the electrical resistivity at room temperature are 0.185-0.285 mV/K and 0.30-2.4 Ω.cm, respectively. By reducing the sputtering power ratio to 7%, however, the Seebeck coefficient does not change much, though the electrical resistivity still decreases with the amount of aluminum increasing; the Seebeck coefficient and electrical resistivity at room temperature are 0.219-0.263 mV/K and 0.26-0.80 Ω·cm, respectively. 展开更多
关键词 polycrystalline materials thin films silicon thermoelectric effects Seebeck effect electrical resistivity magnetron sputtering
下载PDF
Boron-Silicon Thin Film Formation Using a Slim Vertical Chemical Vapor Deposition Reactor
15
作者 Yuki Kamochi Atsuhiro Motomiya +3 位作者 Hitoshi Habuka Yuuki Ishida Shin-Ichi Ikeda Shiro Hara 《Advances in Chemical Engineering and Science》 CAS 2023年第1期7-18,共12页
A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900&#8451;in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reacto... A boron-silicon film was formed from boron trichloride gas and dichlorosilane gas at about 900&#8451;in ambient hydrogen at atmospheric pressure utilizing a slim vertical cold wall chemical vapor deposition reactor designed for the Minimal Fab system. The gas flow rates were 80, 20 and 0.1 - 20 sccm for the hydrogen, dichlorosilane and boron trichloride gases, respectively. The gas transport condition in the reactor was shown to quickly become stable when evaluated by quartz crystal microbalances at the inlet and outlet. The boron-silicon thin film was formed by achieving the various boron concentrations of 0.16% - 80%, the depth profile of which was flat. By observing the cross-sectional TEM image, the obtained film was dense. The boron trichloride gas is expected to be useful for the quick fabrication of various materials containing boron at significantly low and high concentrations. 展开更多
关键词 Chemical Vapor Deposition Boron-silicon film Boron Trichloride DICHLOROSILANE
下载PDF
Properties of fluorescence based on the immobilization of graphene oxide quantum dots in nanostructured porous silicon films
16
作者 蕾何 贾振红 周骏 《Chinese Optics Letters》 SCIE EI CAS CSCD 2016年第4期42-45,共4页
The fluorescence of graphene oxide quantum dots (GOQDs) that are infiltrated into porous silicon (PSi) is investigated. By dropping activated GOQDs solution onto silanized PSi samples, GOQDs are successfully in- f... The fluorescence of graphene oxide quantum dots (GOQDs) that are infiltrated into porous silicon (PSi) is investigated. By dropping activated GOQDs solution onto silanized PSi samples, GOQDs are successfully in- filtrated into a PSi device. The results indicate that the intensity of the fluorescence of the GOQD-inflltrated multilayer with a high reflection band located at its fluorescence spectra scope is approximately double that of the single layer sample. This indicates that the multilayer GOQD-infiltrated PSi substrate is a suitable material for the preparation of sensitive photoluminescence biosensors. 展开更多
关键词 QDs Properties of fluorescence based on the immobilization of graphene oxide quantum dots in nanostructured porous silicon films
原文传递
Rain Erosion Behavior of Silicon Dioxide Films Prepared on Sapphire 被引量:2
17
作者 Liping FENG+, Zhengtang LIU and Wenting LIU Laboratory of Functional Materials, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an710072, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第6期883-886,共4页
Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and rain erosion resistant performance of infrared domes of... Silicon dioxide (SiO2) films were prepared on sapphire (α-Al2O3) by radio frequency magnetron reactive sputtering in order to increase both transmission and rain erosion resistant performance of infrared domes of sapphire. Composition and structure of SiO2 films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The transmittance of uncoated and coated sapphire was measured using a Fourier transform infrared (FTIR) spectrometer. Rain erosion tests of the uncoated and coated sapphire were performed at 211 m/s impact velocity with an exposure time ranging from 1 to 8 min on a whirling arm rig. Results show that the deposited films can greatly increase the transmission of sapphire in mid-wave IR. After rain erosion test, decreases in normalized transmission were less than 1% for designed SiO2 films and the SiO2 coating was strongly bonded to the sapphire substrate. In addition, sapphires coated with SiO2 films had a higher transmittance than uncoated ones after rain erosion. 展开更多
关键词 silicon dioxide films SAPPHIRE Magnetron reactive sputtering Rain erosion
下载PDF
Research on the optimum hydrogenated silicon thin films for application in solar cells 被引量:1
18
作者 雷青松 吴志猛 +3 位作者 耿新华 赵颖 孙健 奚建平 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第12期3033-3038,共6页
Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃,... Hydrogenated silicon (Si:H) thin films for application in solar ceils were deposited by using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at a substrate temperature of about 170 ℃, The electrical, structural, and optical properties of the films were investigated. The deposited films were then applied as i-layers for p-i-n single junction solar cells. The current-voltage (I - V) characteristics of the cells were measured before and after the light soaking. The results suggest that the films deposited near the transition region have an optimum properties for application in solar cells. The cell with an i-layer prepared near the transition region shows the best stable performance. 展开更多
关键词 hydrogenated silicon thin film transition region Si:H thin film solar cell STABILITY
下载PDF
PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM 被引量:1
19
作者 Y.F.Hu H.Shen +1 位作者 Z.Y.Liu L.S.Wen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第4期309-312,共4页
Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells. In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film, is discussed. ... Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells. In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film, is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6.05% without anti-reflection coating. 展开更多
关键词 poly-crystalline silicon thin film RTCVD (rapid thermal chem- ical vapor deposition) SSP (silicon sheet from powder)
下载PDF
High rate deposition of microcrystalline silicon films by high-pressure radio frequency plasma enhanced chemical vapor deposition (PECVD) 被引量:1
20
作者 ZHOU BingQing ZHU MeiFang +4 位作者 LIU FengZhen LIU JinLong ZHOU YuQin LI GuoHua DING Kun 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第4期371-377,共7页
Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate ... Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 /s at a high pressure. The Voc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 /s. 展开更多
关键词 RADIO-FREQUENCY plasma enhanced chemical vapor DEPOSITION (rf-PECVD) MICROCRYSTALLINE silicon film high rate DEPOSITION
原文传递
上一页 1 2 83 下一页 到第
使用帮助 返回顶部