Vector accelerometer has attracted much attention for its great application potential in underground seismic signal measurement. We propose and demonstrate a novel vector accelerometer based on the three fiber Bragg g...Vector accelerometer has attracted much attention for its great application potential in underground seismic signal measurement. We propose and demonstrate a novel vector accelerometer based on the three fiber Bragg gratings(FBGs)embedded in a silicone rubber compliant cylinder at 120° distributed uniformly. The accelerometer is capable of detecting the orientation of vibration with a range of 0°–360° and the acceleration through monitoring the central wavelength shifts of three FBGs simultaneously. The experimental results show that the natural frequency of the accelerometer is about 85 Hz, and the sensitivity is 84.21 pm/g in the flat range of 20 Hz–60 Hz. Through experimental calibration, the designed accelerometer can accurately obtain vibration vector information, including vibration orientation and acceleration. In addition, the range of resonant frequency and sensitivity can be expanded by adjusting the hardness of the silicone rubber materials. Due to the characteristics of small size and orientation recognition, the accelerometer can be applied to low-frequency vibration acceleration vector measurement in narrow spaces.展开更多
A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable...A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable of constructing a microstructure precisely.PS is used as a sacrificial layer,and releasing holes are etched in the film.TMAH solution with additional Si powder and (NH_4)_2S_2O_8 is used to remove PS through the small releasing holes without eroding uncovered Al.The designed fabrication process is full compatible with standard CMOS process.展开更多
The property of silicon micro-capacitive accelerometer is analyzed and discussed by establishing the model of the sensor,to lay a basis for optimization design of sensor system structure. Discussed issues include the ...The property of silicon micro-capacitive accelerometer is analyzed and discussed by establishing the model of the sensor,to lay a basis for optimization design of sensor system structure. Discussed issues include the static modeling and dynamic behavior of the two commonly used structures,i.e., double-cantilever supported and four-beam supported structures, and also the measurement range of these devices.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61927812, 61735014, and 62105261)。
文摘Vector accelerometer has attracted much attention for its great application potential in underground seismic signal measurement. We propose and demonstrate a novel vector accelerometer based on the three fiber Bragg gratings(FBGs)embedded in a silicone rubber compliant cylinder at 120° distributed uniformly. The accelerometer is capable of detecting the orientation of vibration with a range of 0°–360° and the acceleration through monitoring the central wavelength shifts of three FBGs simultaneously. The experimental results show that the natural frequency of the accelerometer is about 85 Hz, and the sensitivity is 84.21 pm/g in the flat range of 20 Hz–60 Hz. Through experimental calibration, the designed accelerometer can accurately obtain vibration vector information, including vibration orientation and acceleration. In addition, the range of resonant frequency and sensitivity can be expanded by adjusting the hardness of the silicone rubber materials. Due to the characteristics of small size and orientation recognition, the accelerometer can be applied to low-frequency vibration acceleration vector measurement in narrow spaces.
文摘A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable of constructing a microstructure precisely.PS is used as a sacrificial layer,and releasing holes are etched in the film.TMAH solution with additional Si powder and (NH_4)_2S_2O_8 is used to remove PS through the small releasing holes without eroding uncovered Al.The designed fabrication process is full compatible with standard CMOS process.
文摘The property of silicon micro-capacitive accelerometer is analyzed and discussed by establishing the model of the sensor,to lay a basis for optimization design of sensor system structure. Discussed issues include the static modeling and dynamic behavior of the two commonly used structures,i.e., double-cantilever supported and four-beam supported structures, and also the measurement range of these devices.