Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. ...Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescenee(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360 nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanoerystals was discussed.展开更多
An investigation was conducted into the effect of hydrogen dilution on the microstructure and optical properties of silicon nanograins embedded in silicon nitride (Si/SiNx) thin film deposited by the helicon wave pl...An investigation was conducted into the effect of hydrogen dilution on the microstructure and optical properties of silicon nanograins embedded in silicon nitride (Si/SiNx) thin film deposited by the helicon wave plasma-enhanced chemical vapour deposition technique. With Ar-diluted SiH4 and N2 as the reactant gas sources in the fabrication of thin film, the film was formed at a high deposition rate. There was a high density of defect at the amorphous silicon (a-Si)/SiNx interface and a relative low optical gap in the film. An addition of hydrogen into the reactant gas reduced the film deposition rate sharply. The silicon nanograins in the SiNx matrix were in a crystalline state, and the density of defects at the silicon nanocrystals (nc-Si)/SiNx interface decreased significantly and the optical gap of the films widened. These results suggested that hydrogen activated by the plasma could not only eliminate in the defects between the interface of silicon nanograins and SiNx matrix, but also helped the nanograins transform from the amorphous into crystalline state. By changing the hydrogen dilution ratio in the reactant gas sources, a tunable band gap from 1.87 eV to 3.32 eV was obtained in the Si/SiNx film.展开更多
Silicon nanocrystals embedded in silicon nitride films were irradiated with Si-ions at 8 MeV in order to modify their optical response. The samples were characterized by means of Rutherford Backscattering Spectrometry...Silicon nanocrystals embedded in silicon nitride films were irradiated with Si-ions at 8 MeV in order to modify their optical response. The samples were characterized by means of Rutherford Backscattering Spectrometry, Elastic Recoil Detection Analysis, High-Resolution Transmission Electronic Microscopy and Photoluminescence analysis. It was found a blue-shift in the photoluminescence emission from the as-grown films after they were irradiated with high energetic silicon ions. According to the quantum confinement theory, this fact is related to a decrease in size of the silicon nanocrystals, which means that a higher silicon fluence irradiation is related with a diminishing in silicon nanocrystal size.展开更多
In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alke...In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing -NH2 and -C4H3S lead to significant hydrosilylation- induced changes in the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkene- hydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest (0.8 nm) Si NCs hydrosilylated with alkenes containing -NH2 and -C4H3S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement.展开更多
A Raman frequency upshift in the nc-Si phonon mode is observed at room temperature, which is attributed to a strong compressive stress in the Si nanocrystals. The 10-period amorphous-Si(3 nm)/amorphous-SiO2 (3 nm)...A Raman frequency upshift in the nc-Si phonon mode is observed at room temperature, which is attributed to a strong compressive stress in the Si nanocrystals. The 10-period amorphous-Si(3 nm)/amorphous-SiO2 (3 nm) layers are deposited by high-vacuum radio-frequency magnetron sputtering on quartz and sapphire substrates at different temperatures. The samples are then annealed in N2 atmosphere at 1100 ℃ for 1 h for Si crystallization. It is demonstrated that the presence of a supporting substrate at the high growth temperature can induce different types of stresses in the Si nanocrystal layers. The strain is attributed to the difference in the thermal expansion coefficient between the substrate and the Si/SiO2 SL film. Such a substrate-indueed stress indicates a new method for tuning the optical and electronic properties of Si nanocrystals for strained engineering.展开更多
A conical form of nano-sized quantum cluster was formed on the surface of p-type crystalline silicon [111] wafer by anode electrochemical etching in HF-based solution.The conical surface is highly effective in absorbi...A conical form of nano-sized quantum cluster was formed on the surface of p-type crystalline silicon [111] wafer by anode electrochemical etching in HF-based solution.The conical surface is highly effective in absorbing sunlight and transporting photoelectrons to semiconductor material.These are because each cone has a graded band gap with the energy level in the range from 1.1 to 3 eV which can be considered as consisting of quantum dots in different sizes.Since the boron concentration on the surface of each cone gradually decreases from top to bottom,a continuously varying electrical field is created along the cone height.This electric field is forcing photoelectrons generated in the cone to move rapidly to the direction perpendicular to wafer surface.Hence the drift time of photoelectrons can be less than their recombination time within the thin layer close to the bottom of the cone.展开更多
Si-rich silicon nitride films are prepared by plasma-enhanced chemical vapor deposition method, followed by thermal annealing to form the Si nanocrystals(Si-NCs) embedded in Si Nx floating gate MOS structures. The c...Si-rich silicon nitride films are prepared by plasma-enhanced chemical vapor deposition method, followed by thermal annealing to form the Si nanocrystals(Si-NCs) embedded in Si Nx floating gate MOS structures. The capacitance–voltage(C–V), current–voltage(I–V), and admittance–voltage(G–V) measurements are used to investigate the charging characteristics. It is found that the maximum flat band voltage shift(△VFB) due to full charged holes(~ 6.2 V) is much larger than that due to full charged electrons(~ 1 V). The charging displacement current peaks of electrons and holes can be also observed by the I–V measurements, respectively. From the G–V measurements we find that the hole injection is influenced by the oxide hole traps which are located near the Si O2/Si-substrate interface. Combining the results of C–V and G–V measurements, we find that the hole charging of the Si-NCs occurs via a two-step tunneling mechanism. The evolution of G–V peak originated from oxide traps exhibits the process of hole injection into these defects and transferring to the Si-NCs.展开更多
In this letter a formation of solution based of bulk-heterojunction based on freestanding silicon nanocrystals(Si-ncs) and conjugated((poly(3-hexylthiophene)(P3HT) polymer is demonstrated. Surfactant free Si-ncs prepa...In this letter a formation of solution based of bulk-heterojunction based on freestanding silicon nanocrystals(Si-ncs) and conjugated((poly(3-hexylthiophene)(P3HT) polymer is demonstrated. Surfactant free Si-ncs prepared by low-cost electrochemical etching are applied for fabrication of bulk-heterojunction and photo-conductive blends. We show that the optimum blend performance is at 40 wt% nanocrystallites concentration within the P3 HT polymer matrix. Furthermore, we illustrate that solar cell transport properties can be improved by nanosecond laser fragmentation of the nanocrystallites micrograins in ethanol. It argues that the Si-ncs/polymer blend with refine nanocrystaline structure may impact the development of low-cost solar cells by environmental- friendly mean.展开更多
The presence of silicon nanocrystals on the surface of standard wafer samples of Si, conserved under “usual” laboratory conditions, has been investigated by micro-Raman analysis, performed for increasing intensity o...The presence of silicon nanocrystals on the surface of standard wafer samples of Si, conserved under “usual” laboratory conditions, has been investigated by micro-Raman analysis, performed for increasing intensity of laser irradiation. The poor thermal connection of such small crystals to the Si wafer bulk allows for the appearance of two well distinct Raman bands in the spectra, with a different evolution for increasing irradiance levels: the first, expected, due to bulk silicon response, the other one assignable to the silicon nanocrystals. A careful analysis of peak position and linewidth has been carried out, both for the Raman contribution from the nanocrystals, reaching high temperatures under irradiation (up to 1400 K), and for the one from the “bulk” Si, which remains practically at room temperature. The analysis of the spectra and the comparison with previous studies on nc-Si suggest that such nanocrystals do not have a very small size, so that the observed changes of spectral parameters are mainly due to laser heating, rather than quantum confinement effects. In any case, we performed also an independent size deter-mination by AFM mapping, confirming a size distribution well peaked be-tween 50 and 100 nm. As a corollary from this analysis, we get the indication that apparent linewidths and positions, at low laser irradiation levels, can be slightly changed in the presence of nc-Si on the surface. It is due to the differ-ent thermal responses of bulk and nanocrystalline components, inducing un-resolved separate components;this hypothesis suggests reanalysing some previous experimental data, in particular for many Raman spectra of Si col-lected at “room temperature”.展开更多
A nonlinear integrated optical platform that allows the fabrication of waveguide circuits with different material composition,and at small dimensions,offers advantages in terms of field enhancement and increased inter...A nonlinear integrated optical platform that allows the fabrication of waveguide circuits with different material composition,and at small dimensions,offers advantages in terms of field enhancement and increased interaction length,thereby facilitating the observation of nonlinear optics effects at a much lower power level.To enhance the nonlinearity of the conventional waveguide structure,in this work,we propose and demonstrate a microstructured waveguide where silicon rich layer is embedded in the core of the conventional waveguide in order to increase its nonlinearity.By embedding a 20 nm thin film of silicon nanocrystal(Si-nc),we achieve a twofold increase of the nonlinear parameter,γ.The linear relationship between the fourwave mixing conversion efficiency and pump power reveals the negligible nonlinear absorption and small dispersion in the micro-ring resonators.This simple approach of embedding an ultra-thin Si-nc layer into conventional high-index doped silica dramatically increases its nonlinear performance,and could potentially find applications in all-optical processing functions.展开更多
Under electron beam irradiation,the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed.The homogenous transition mainly occurs at the thin edge and on th...Under electron beam irradiation,the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed.The homogenous transition mainly occurs at the thin edge and on the surface of specimen where the energy obtained from electron beam irradiation is high enough to cause the amorphous crystallizing into 2H-SiC.展开更多
Based on the charge storage mode,it is important to investigate the scaling dependence of memory performance in silicon nanocrystal(Si-NC) nonvolatile memory(NVM) devices for its scaling down limit.In this work,we...Based on the charge storage mode,it is important to investigate the scaling dependence of memory performance in silicon nanocrystal(Si-NC) nonvolatile memory(NVM) devices for its scaling down limit.In this work,we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor(CMOS) technology.It is found that the memory windows of eight kinds of test key cells are almost the same of about1.64 V @ ±7 V/1 ms,which are independent of the gate area,but mainly determined by the average size(12 nm) and areal density(1.8×10^(11)/cm^2) of Si-NCs.The program/erase(P/E) speed characteristics are almost independent of gate widths and lengths.However,the erase speed is faster than the program speed of test key cells,which is due to the different charging behaviors between electrons and holes during the operation processes.Furthermore,the data retention characteristic is also independent of the gate area.Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration.展开更多
The early stages of hydrogenated nanocrystalline silicon (nc-Si:H) films deposited by plasma-enhanced chemical vapour deposition were characterized by atomic force microscopy. To increase the density of nanocrystal...The early stages of hydrogenated nanocrystalline silicon (nc-Si:H) films deposited by plasma-enhanced chemical vapour deposition were characterized by atomic force microscopy. To increase the density of nanocrystals in the nc-Si:H films, the films were annealed by rapid thermal annealing (RTA) at different temperatures and then analysed by Raman spectroscopy. It was found that the recrystallization process of the film was optimal at around 1000℃. The effects of different RTA conditions on charge storage were characterized by capacitance-voltage measurement. Experimental results show that nc-Si:H films obtained by RTA have good charge storage characteristics for nonvolatile memory.展开更多
Well-aligned and closely-packed silicon nanopillar (SNP) arrays are fabricated by using a simple method with magnetron sputtering of Si on a porous anodic alumina (PAA) template at room temperature. The SNPs are f...Well-aligned and closely-packed silicon nanopillar (SNP) arrays are fabricated by using a simple method with magnetron sputtering of Si on a porous anodic alumina (PAA) template at room temperature. The SNPs are formed by selective growth on the top of the PAA pore walls. The growth mechanism analysis indicates that the structure of the SNPs can be modulated by the pore spacing of the PAA and the sputtering process and is independent of the wall width of the PAA. Moreover, nanocrystals are identified by using transmission electron microscopy in the as-deposited SNP samples, which are related to the heat isolation structure of the SNPs. The Raman focus depth profile reveals a high crystallization ratio on the surface.展开更多
该研究制备高电导、高透明的磷掺杂氢化纳米晶硅氧(nc-Si Ox:H)薄膜,应用于晶硅异质结(SHJ)太阳电池的窗口层以替代传统的氢化非晶硅(a-Si:H)薄膜。与以a-Si:H薄膜为窗口层的电池相比,短路电流密度提高0.5 m A/cm^(2),达到38.5 m A/cm^(...该研究制备高电导、高透明的磷掺杂氢化纳米晶硅氧(nc-Si Ox:H)薄膜,应用于晶硅异质结(SHJ)太阳电池的窗口层以替代传统的氢化非晶硅(a-Si:H)薄膜。与以a-Si:H薄膜为窗口层的电池相比,短路电流密度提高0.5 m A/cm^(2),达到38.5 m A/cm^(2),填充因子为82.7%,光电转换效率为23.5%。实验发现,在nc-Si Ox:H薄膜沉积前对本征非晶硅层表面进行处理,沉积1 nm纳米晶硅(nc-Si:H)种子层,可改善nc-Si Ox:H薄膜的晶化率,降低薄膜中的非晶相含量。与单层nc-Si Ox:H窗口层的电池相比,nc-Si:H/nc-Si Ox:H叠层结构提高电池填充因子,达到83.4%,光电转换效率增加了0.3%,达到23.8%。展开更多
Macroporous silicon formed by photoanodic etching with high aspect ratio and large effective surface is one of the promising materials for the development of 2D photonic structures. We fabricated nanocoatings of CdTe,...Macroporous silicon formed by photoanodic etching with high aspect ratio and large effective surface is one of the promising materials for the development of 2D photonic structures. We fabricated nanocoatings of CdTe, ZnO, CdS surface nanocrystals and SiO2 layers on macroporous silicon surface. The near-IR optical absorption was investigated and well-separated oscillations with giant amplitude were observed in the spectral ranges of surface level absorption. This process is because of resonance electron scattering on the surface impurity states with the difference between two resonance energies equal to the Wannier-Stark ladder. Macroporous silicon structures with SiO2 nanolayers and CdS nanocrystals are proposed to enhance the photoluminescence of CdS nanoparticles with quantum yield 28%. Addition functionalization of 2D macroporous silicon is a result of the high-pressure oxidation. The structural SiO2 reorganization to orthorhombic phase increases the concentration of paramagnetic Pb centers, EPR signal amplitude and GHz radiation absorption.展开更多
Naturally oxidized freestanding silicon nanocrystals (Si NCs) are incorporated in commonly used encapsulating materials to explore the photoluminescent application of Si NCs in device structures such as solid-state ...Naturally oxidized freestanding silicon nanocrystals (Si NCs) are incorporated in commonly used encapsulating materials to explore the photoluminescent application of Si NCs in device structures such as solid-state lighting light-emitting diodes (LEDs) and solar cells. The quantum yield of Si NCs before the incorporation has reached about 45% at the excitation wavelength of 370 nm without any special surface modification. It is found that medium Ioadings, e.g., 5 wt% of Si NCs in encapsulating materials help to obtain high external quantum efficiency (EQE) of the mixtures of Si NCs and encapsulating materials. The curing of encapsulating materials significantly reduces EQE. Among all the encapsulating materials investigated in this work, silicone- OE6551 enables the highest EQE (21% at excitation wavelength λex = 370 nm) after curing. Based on current findings, we have discussed the continuous efforts to advance the photoluminescent application of Si NCs.展开更多
基金National Natural Science Foundation of China(60336010)
文摘Si-rich silicon oxide films were deposited by RF magnetron sputtering onto composite Si/SiO2 targets. After annealed at different temperature, the silicon oxide films embedded with silicon nanocrystals were obtained. The photoluminescenee(PL) from the silicon oxide films embedded with silicon nanocrystals was observed at room temperature. The strong peak is at 360 nm, its position is independent of the annealing temperature. The origin of the 360-nm PL in the silicon oxide films embedded with silicon nanoerystals was discussed.
基金supported by the Natural Science Foundation of Hebei Province,China (E2004000119,E2007000201)
文摘An investigation was conducted into the effect of hydrogen dilution on the microstructure and optical properties of silicon nanograins embedded in silicon nitride (Si/SiNx) thin film deposited by the helicon wave plasma-enhanced chemical vapour deposition technique. With Ar-diluted SiH4 and N2 as the reactant gas sources in the fabrication of thin film, the film was formed at a high deposition rate. There was a high density of defect at the amorphous silicon (a-Si)/SiNx interface and a relative low optical gap in the film. An addition of hydrogen into the reactant gas reduced the film deposition rate sharply. The silicon nanograins in the SiNx matrix were in a crystalline state, and the density of defects at the silicon nanocrystals (nc-Si)/SiNx interface decreased significantly and the optical gap of the films widened. These results suggested that hydrogen activated by the plasma could not only eliminate in the defects between the interface of silicon nanograins and SiNx matrix, but also helped the nanograins transform from the amorphous into crystalline state. By changing the hydrogen dilution ratio in the reactant gas sources, a tunable band gap from 1.87 eV to 3.32 eV was obtained in the Si/SiNx film.
文摘Silicon nanocrystals embedded in silicon nitride films were irradiated with Si-ions at 8 MeV in order to modify their optical response. The samples were characterized by means of Rutherford Backscattering Spectrometry, Elastic Recoil Detection Analysis, High-Resolution Transmission Electronic Microscopy and Photoluminescence analysis. It was found a blue-shift in the photoluminescence emission from the as-grown films after they were irradiated with high energetic silicon ions. According to the quantum confinement theory, this fact is related to a decrease in size of the silicon nanocrystals, which means that a higher silicon fluence irradiation is related with a diminishing in silicon nanocrystal size.
基金supported by the National Basic Research Program of China(Grant No.2013CB632101)the National Natural Science Foundation of China forExcellent Young Researchers(Grant No.61222404)+1 种基金the Research and Development Program of Ministry of Education of China(Grant No.62501040202)the 2012 UAlberta MOST Joint Research Laboratories Program,China
文摘In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing -NH2 and -C4H3S lead to significant hydrosilylation- induced changes in the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkene- hydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest (0.8 nm) Si NCs hydrosilylated with alkenes containing -NH2 and -C4H3S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61021003, 61036001, and 51072194)the Foundation of Chinese Academy of Sciences
文摘A Raman frequency upshift in the nc-Si phonon mode is observed at room temperature, which is attributed to a strong compressive stress in the Si nanocrystals. The 10-period amorphous-Si(3 nm)/amorphous-SiO2 (3 nm) layers are deposited by high-vacuum radio-frequency magnetron sputtering on quartz and sapphire substrates at different temperatures. The samples are then annealed in N2 atmosphere at 1100 ℃ for 1 h for Si crystallization. It is demonstrated that the presence of a supporting substrate at the high growth temperature can induce different types of stresses in the Si nanocrystal layers. The strain is attributed to the difference in the thermal expansion coefficient between the substrate and the Si/SiO2 SL film. Such a substrate-indueed stress indicates a new method for tuning the optical and electronic properties of Si nanocrystals for strained engineering.
基金supported by Hanyang University’s Brain Korea 21 program
文摘A conical form of nano-sized quantum cluster was formed on the surface of p-type crystalline silicon [111] wafer by anode electrochemical etching in HF-based solution.The conical surface is highly effective in absorbing sunlight and transporting photoelectrons to semiconductor material.These are because each cone has a graded band gap with the energy level in the range from 1.1 to 3 eV which can be considered as consisting of quantum dots in different sizes.Since the boron concentration on the surface of each cone gradually decreases from top to bottom,a continuously varying electrical field is created along the cone height.This electric field is forcing photoelectrons generated in the cone to move rapidly to the direction perpendicular to wafer surface.Hence the drift time of photoelectrons can be less than their recombination time within the thin layer close to the bottom of the cone.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB934402)the National Natural Science Foundation of China(Grant No.11374153)
文摘Si-rich silicon nitride films are prepared by plasma-enhanced chemical vapor deposition method, followed by thermal annealing to form the Si nanocrystals(Si-NCs) embedded in Si Nx floating gate MOS structures. The capacitance–voltage(C–V), current–voltage(I–V), and admittance–voltage(G–V) measurements are used to investigate the charging characteristics. It is found that the maximum flat band voltage shift(△VFB) due to full charged holes(~ 6.2 V) is much larger than that due to full charged electrons(~ 1 V). The charging displacement current peaks of electrons and holes can be also observed by the I–V measurements, respectively. From the G–V measurements we find that the hole injection is influenced by the oxide hole traps which are located near the Si O2/Si-substrate interface. Combining the results of C–V and G–V measurements, we find that the hole charging of the Si-NCs occurs via a two-step tunneling mechanism. The evolution of G–V peak originated from oxide traps exhibits the process of hole injection into these defects and transferring to the Si-NCs.
文摘In this letter a formation of solution based of bulk-heterojunction based on freestanding silicon nanocrystals(Si-ncs) and conjugated((poly(3-hexylthiophene)(P3HT) polymer is demonstrated. Surfactant free Si-ncs prepared by low-cost electrochemical etching are applied for fabrication of bulk-heterojunction and photo-conductive blends. We show that the optimum blend performance is at 40 wt% nanocrystallites concentration within the P3 HT polymer matrix. Furthermore, we illustrate that solar cell transport properties can be improved by nanosecond laser fragmentation of the nanocrystallites micrograins in ethanol. It argues that the Si-ncs/polymer blend with refine nanocrystaline structure may impact the development of low-cost solar cells by environmental- friendly mean.
文摘The presence of silicon nanocrystals on the surface of standard wafer samples of Si, conserved under “usual” laboratory conditions, has been investigated by micro-Raman analysis, performed for increasing intensity of laser irradiation. The poor thermal connection of such small crystals to the Si wafer bulk allows for the appearance of two well distinct Raman bands in the spectra, with a different evolution for increasing irradiance levels: the first, expected, due to bulk silicon response, the other one assignable to the silicon nanocrystals. A careful analysis of peak position and linewidth has been carried out, both for the Raman contribution from the nanocrystals, reaching high temperatures under irradiation (up to 1400 K), and for the one from the “bulk” Si, which remains practically at room temperature. The analysis of the spectra and the comparison with previous studies on nc-Si suggest that such nanocrystals do not have a very small size, so that the observed changes of spectral parameters are mainly due to laser heating, rather than quantum confinement effects. In any case, we performed also an independent size deter-mination by AFM mapping, confirming a size distribution well peaked be-tween 50 and 100 nm. As a corollary from this analysis, we get the indication that apparent linewidths and positions, at low laser irradiation levels, can be slightly changed in the presence of nc-Si on the surface. It is due to the differ-ent thermal responses of bulk and nanocrystalline components, inducing un-resolved separate components;this hypothesis suggests reanalysing some previous experimental data, in particular for many Raman spectra of Si col-lected at “room temperature”.
基金the Research Grants Council,University Grants Committee(GRF 11213618)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB24030300).
文摘A nonlinear integrated optical platform that allows the fabrication of waveguide circuits with different material composition,and at small dimensions,offers advantages in terms of field enhancement and increased interaction length,thereby facilitating the observation of nonlinear optics effects at a much lower power level.To enhance the nonlinearity of the conventional waveguide structure,in this work,we propose and demonstrate a microstructured waveguide where silicon rich layer is embedded in the core of the conventional waveguide in order to increase its nonlinearity.By embedding a 20 nm thin film of silicon nanocrystal(Si-nc),we achieve a twofold increase of the nonlinear parameter,γ.The linear relationship between the fourwave mixing conversion efficiency and pump power reveals the negligible nonlinear absorption and small dispersion in the micro-ring resonators.This simple approach of embedding an ultra-thin Si-nc layer into conventional high-index doped silica dramatically increases its nonlinear performance,and could potentially find applications in all-optical processing functions.
基金Project supproted by the National Natural Science Foundation of China(60025409 and 50472068)National"863"High Technology Plan(2001AA311080)Program for New Century Excellent Talents in Shangdong University
文摘Under electron beam irradiation,the in-situ formation of 2H-SiC dentritic nanocrystals from amorphous silicon carbide at room temperature was observed.The homogenous transition mainly occurs at the thin edge and on the surface of specimen where the energy obtained from electron beam irradiation is high enough to cause the amorphous crystallizing into 2H-SiC.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2010CB934402)the National Natural Science Foundation of China(Grant Nos.11374153,61571221,and 61071008)
文摘Based on the charge storage mode,it is important to investigate the scaling dependence of memory performance in silicon nanocrystal(Si-NC) nonvolatile memory(NVM) devices for its scaling down limit.In this work,we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor(CMOS) technology.It is found that the memory windows of eight kinds of test key cells are almost the same of about1.64 V @ ±7 V/1 ms,which are independent of the gate area,but mainly determined by the average size(12 nm) and areal density(1.8×10^(11)/cm^2) of Si-NCs.The program/erase(P/E) speed characteristics are almost independent of gate widths and lengths.However,the erase speed is faster than the program speed of test key cells,which is due to the different charging behaviors between electrons and holes during the operation processes.Furthermore,the data retention characteristic is also independent of the gate area.Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration.
基金Project supported by the National Basic Research Program of China (973 Program) (Grant No 2006CB302706) and the National Natural Science Foundation of China (Grant Nos 90607022, 904010027 90207004, and 60506005).
文摘The early stages of hydrogenated nanocrystalline silicon (nc-Si:H) films deposited by plasma-enhanced chemical vapour deposition were characterized by atomic force microscopy. To increase the density of nanocrystals in the nc-Si:H films, the films were annealed by rapid thermal annealing (RTA) at different temperatures and then analysed by Raman spectroscopy. It was found that the recrystallization process of the film was optimal at around 1000℃. The effects of different RTA conditions on charge storage were characterized by capacitance-voltage measurement. Experimental results show that nc-Si:H films obtained by RTA have good charge storage characteristics for nonvolatile memory.
基金supported by the Major State Basic Research Programme of China(Grant No.2007CB613404)the National Natural Science Foundation of China(Grant Nos.60906035,61036001,61036003,and 51072194)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.ISCAS2009T01)
文摘Well-aligned and closely-packed silicon nanopillar (SNP) arrays are fabricated by using a simple method with magnetron sputtering of Si on a porous anodic alumina (PAA) template at room temperature. The SNPs are formed by selective growth on the top of the PAA pore walls. The growth mechanism analysis indicates that the structure of the SNPs can be modulated by the pore spacing of the PAA and the sputtering process and is independent of the wall width of the PAA. Moreover, nanocrystals are identified by using transmission electron microscopy in the as-deposited SNP samples, which are related to the heat isolation structure of the SNPs. The Raman focus depth profile reveals a high crystallization ratio on the surface.
文摘Macroporous silicon formed by photoanodic etching with high aspect ratio and large effective surface is one of the promising materials for the development of 2D photonic structures. We fabricated nanocoatings of CdTe, ZnO, CdS surface nanocrystals and SiO2 layers on macroporous silicon surface. The near-IR optical absorption was investigated and well-separated oscillations with giant amplitude were observed in the spectral ranges of surface level absorption. This process is because of resonance electron scattering on the surface impurity states with the difference between two resonance energies equal to the Wannier-Stark ladder. Macroporous silicon structures with SiO2 nanolayers and CdS nanocrystals are proposed to enhance the photoluminescence of CdS nanoparticles with quantum yield 28%. Addition functionalization of 2D macroporous silicon is a result of the high-pressure oxidation. The structural SiO2 reorganization to orthorhombic phase increases the concentration of paramagnetic Pb centers, EPR signal amplitude and GHz radiation absorption.
基金supported by the National Natural Science Foundation of China(Nos.50902122 and 50832006)Partial support from R&D Program of Ministry of Education of China (No.62501040202)+2 种基金Innovation Team Project of Zhejiang Province,China(No.2009R50005)Basic Funding for Research at Zhejiang University,China(No.2011FZA4005)Major Scientific program of Zhejiang Province,China(No. 2009C01024-2)
文摘Naturally oxidized freestanding silicon nanocrystals (Si NCs) are incorporated in commonly used encapsulating materials to explore the photoluminescent application of Si NCs in device structures such as solid-state lighting light-emitting diodes (LEDs) and solar cells. The quantum yield of Si NCs before the incorporation has reached about 45% at the excitation wavelength of 370 nm without any special surface modification. It is found that medium Ioadings, e.g., 5 wt% of Si NCs in encapsulating materials help to obtain high external quantum efficiency (EQE) of the mixtures of Si NCs and encapsulating materials. The curing of encapsulating materials significantly reduces EQE. Among all the encapsulating materials investigated in this work, silicone- OE6551 enables the highest EQE (21% at excitation wavelength λex = 370 nm) after curing. Based on current findings, we have discussed the continuous efforts to advance the photoluminescent application of Si NCs.