A reverse bias silicon p-n junction based on light emitting diode is designed in standard 0.6μm industrial CMOS technology.The mechanism of the light emitting of this device is discussed.The device is simulated by th...A reverse bias silicon p-n junction based on light emitting diode is designed in standard 0.6μm industrial CMOS technology.The mechanism of the light emitting of this device is discussed.The device is simulated by the commercial software.I-V characteristic under forward or reverse bias is simulated utilizing the commercial software.The results between simulation and experiment data are compared.The results show that it is a promising device and may find applications in light linking.展开更多
The electrical nonlinearity of silicon modulators based on reversed PN junctions was found to severely limit the linearity of the modulators.This effect,however,was inadvertently neglected in previous studies.Consider...The electrical nonlinearity of silicon modulators based on reversed PN junctions was found to severely limit the linearity of the modulators.This effect,however,was inadvertently neglected in previous studies.Considering the electrical nonlinearity in simulation,a 32.2 dB degradation in the CDR3(i.e.,the suppression ratio between the fundamental signal and intermodulation distortion)of the modulator was observed at a modulation speed of 12 GHz,and the spurious free dynamic range was simultaneously degraded by 17.4 dB.It was also found that the linearity of the silicon modulator could be improved by reducing the series resistance of the PN junction.The frequency dependence of the linearity due to the electrical nonlinearity was also investigated.展开更多
文摘A reverse bias silicon p-n junction based on light emitting diode is designed in standard 0.6μm industrial CMOS technology.The mechanism of the light emitting of this device is discussed.The device is simulated by the commercial software.I-V characteristic under forward or reverse bias is simulated utilizing the commercial software.The results between simulation and experiment data are compared.The results show that it is a promising device and may find applications in light linking.
基金National Natural Science Foundation of China(NSFC)(61575189,61635011)
文摘The electrical nonlinearity of silicon modulators based on reversed PN junctions was found to severely limit the linearity of the modulators.This effect,however,was inadvertently neglected in previous studies.Considering the electrical nonlinearity in simulation,a 32.2 dB degradation in the CDR3(i.e.,the suppression ratio between the fundamental signal and intermodulation distortion)of the modulator was observed at a modulation speed of 12 GHz,and the spurious free dynamic range was simultaneously degraded by 17.4 dB.It was also found that the linearity of the silicon modulator could be improved by reducing the series resistance of the PN junction.The frequency dependence of the linearity due to the electrical nonlinearity was also investigated.