Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive ...Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.展开更多
A robust electron device called the enhanced gated-diode-triggered silicon-controlled rectifier (EGDTSCR) for electrostatic discharge (ESD) protection applications has been proposed and implemented in a 0.18-μm 5-V/2...A robust electron device called the enhanced gated-diode-triggered silicon-controlled rectifier (EGDTSCR) for electrostatic discharge (ESD) protection applications has been proposed and implemented in a 0.18-μm 5-V/24-V BCD process. The proposed EGDTSCR is constructed by adding two gated diodes into a conventional ESD device called the modified lateral silicon-controlled rectifier (MLSCR). With the shunting effect of the surface gated diode path, the proposed EGDTSCR, with a width of 50 μm, exhibits a higher failure current (i.e., 3.82 A) as well as a higher holding voltage (i.e., 10.21 V) than the MLSCR.展开更多
A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection de...A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection device possesses an ESD implant and a floating structure. This improvement enhances the current discharge capability of the gate-grounded NMOS and weakens the current gain of the silicon-controlled rectifier current path. According to the simulation results, the proposed device retains a low trigger voltage characteristic of LVTSCRs and simultaneously increases the holding voltage to 5.53 V, providing an effective way to meet the ESD protection requirement of the 5 V CMOS process.展开更多
The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and...The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.展开更多
The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversi...The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversion.Unfortunately,these semiconductors have almost poor charge transport properties,which range from∼10^(−4) cm^(2)·V^(−1)·s^(−1) to∼10^(−2) cm^(2)·V^(−1)·s^(−1).Vat orange 3,as one of these organic semiconductors,has great potential due to its highly conjugated structure.We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional(2D)growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport.Raman’s results confirm the stability of the chemical structure of Vat orange 3 during growth.Furthermore,by leveraging the structural advantages of 2D materials,an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes,resulting in an excellent transistor performance with On/Off ratio of 104 and high field-effect mobility of 0.14 cm^(2)·V^(−1)·s^(−1).Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications.Furthermore,we showcase an approach that integrates organic semiconductors with 2D materials,aiming to offer new insights into the study of organic semiconductors.展开更多
Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through...Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt.展开更多
This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojun...This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojunction band diagram of InZnO bilayer was modified by the cation composition to form the two-dimensional electron gas(2DEG)at the interface quantum well,as verified using a metal−insulator−semiconductor(MIS)device.Although the 2DEG indeed contributes to a higher mobility than the monolayer channel,the competition and cooperation between the gate field and the built-in field strongly affect such mobility-boosting effect,originating from the carrier inelastic collision at the heterojunction interface and the gate field-induced suppression of quantum well.Benefited from the proper energy-band engineering,a high mobility of 84.3 cm2·V^(−1)·s^(−1),a decent threshold voltage(V_(th))of−6.5 V,and a steep subthreshold swing(SS)of 0.29 V/dec were obtained in InZnO-based heterojunction TFT.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sp...Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.展开更多
Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. Th...Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.展开更多
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w...The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.展开更多
Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. ...Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.展开更多
In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for th...In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.展开更多
The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits t...The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits to sensitive biosensors,and neuromorphic devices like artificial synapses and organic electrochemical random-access memories.Despite recent strides in enhancing OECT performance,driven by the demand for superior transient response capabilities,a comprehensive understanding of the complex interplay between charge and ion transport,alongside electron–ion interactions,as well as the optimization strategies,remains elusive.This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses,emphasizing advancements in device physics and optimization approaches.We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications,as well as the impact of materials,morphology,device structure strategies on optimizing transient responses.This paper not only offers a detailed overview of the current state of the art,but also identifies promising avenues for future research,aiming to drive future performance advancements in diversified applications.展开更多
Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface mo...Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.展开更多
The integration between infrared detection and modern microelectronics offers unique opportunities for compact and high-resolution infrared imaging.However,silicon,the cornerstone of modern microelectronics,can only d...The integration between infrared detection and modern microelectronics offers unique opportunities for compact and high-resolution infrared imaging.However,silicon,the cornerstone of modern microelectronics,can only detect light within a limited wavelength range(<1100 nm)due to its bandgap of 1.12 eV,which restricts its utility in the infrared detection realm.Herein,a photo-driven fin field-effect transistor is presented,which breaks the spectral response constraint of conventional silicon detectors while achieving sensitive infrared detection.This device comprises a fin-shaped silicon channel for charge transport and a lead sulfide film for infrared light harvesting.The lead sulfide film wraps the silicon channel to form a“three-dimensional”infrared-sensitive gate,enabling the photovoltage generated at the lead sulfide-silicon junction to effectively modulate the channel conductance.At room temperature,this device realizes a broadband photodetection from visible(635 nm)to short-wave infrared regions(2700 nm),surpassing the working range of the regular indium gallium arsenide and germanium detectors.Furthermore,it exhibits low equivalent noise powers of 3.2×10^(-12) W·Hz^(-1/2) and 2.3×10^(-11) W·Hz^(-1/2) under 1550 nm and 2700 nm illumination,respectively.These results highlight the significant potential of photo-driven fin field-effect transistors in advancing uncooled silicon-based infrared detection.展开更多
An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wi...An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wide frequency range due to the RC network. The power characteristics of the device as measured by a loadpull system show that the large-signal performance of the power transistor is affected slightly by the RC network. Psat is 30dBm at 5.4GHz,and PldB is larger than 21.6dBm at llGHz. The stability of the device due to RC network is proved by a power combination circuit. This makes the power transistor very suitable for applications in microwavc high power ttBT amplifiers.展开更多
Transparent zinc oxide thin film transistors (ZnO-TFTs) with bottom-gate and top-gate structures were constructed on 50mm silica glass substrates. The ZnO films were deposited by RF magnetron sputtering and SiO2 fil...Transparent zinc oxide thin film transistors (ZnO-TFTs) with bottom-gate and top-gate structures were constructed on 50mm silica glass substrates. The ZnO films were deposited by RF magnetron sputtering and SiO2 films served as the gate insulator layer. We found that the ZnO-TFTs with bottom-gate structure have better electrical performance than those with top-gate structure. The bottom-gate ZnO-TFTs operate as an n-channel enhancement mode, which have clear pinch off and saturation characteristics. The field effect mobility, threshold voltage, and the current on/off ratio were determined to be 18.4cm^2/(V ·s), - 0. 5V and 10^4 , respectively. Meanwhile, the top-gate ZnO-TFTs exhibit n-chan- nel depletion mode operation and no saturation characteristics were detected. The electrical difference of the devices may be due to the different character of the interface between the channel and insulator layers. The two transistors types have high transparency in the visible light region.展开更多
Si based single electron transistor (SET) is fabricated successfully on p type SIMOX substrate,based on electron beam (EB) lithography,reactive ion etching (RIE) and thermal oxidation.In particular,using thermal oxi...Si based single electron transistor (SET) is fabricated successfully on p type SIMOX substrate,based on electron beam (EB) lithography,reactive ion etching (RIE) and thermal oxidation.In particular,using thermal oxidation and etching off the oxide layer,a one dimensional Si quantum wire can be converted into several quantum dots inside quantum wire in connection with the source and drain regions.The differential conductance (d I ds /d V ds ) oscillations and the Coulomb staircases in the source drain current ( I ds ) are shown clearly dependent on the source drain voltage at 5 3K.The I ds V gs (gate voltage) oscillations are observed from the I ds V gs characteristics as a function of V gs at different temperatures and various values of V ds .For a SET whose total capacitance is about 9 16aF,the I ds V gs oscillations can be observed at 77K.展开更多
Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current...Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.展开更多
A new low power quasi adiabatic logic,complementary pass transistor adiabatic logic (CPAL),is presented.The CPAL circuit is driven by a new three phase power clock,and its non adiabatic loss on output loads can b...A new low power quasi adiabatic logic,complementary pass transistor adiabatic logic (CPAL),is presented.The CPAL circuit is driven by a new three phase power clock,and its non adiabatic loss on output loads can be effectively reduced by using complementary pass transistor logic and transmission gates.Furthermore,the minimization of the energy consumption can be obtained by choosing the optimal size of bootstrapped nMOS transistors,thus it has more efficient energy transfer and recovery.A three phase power supply generator with a small control logic circuit and a single inductor is proposed.An 8 bit adder based on CPAL is designed and verified.With MOSIS 0 25μm CMOS technology,the CPAL adder consumes only 35% of the dissipated energy of a 2N 2N2P adder and is about 50% of the dissipated energy of a PFAL adder for clock rates ranging from 50 to 200MHz.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52272160,U2330112,and 52002254)Sichuan Science and Technology Foundation(Nos.2020YJ0262,2021YFH0127,2022YFH0083,2022YFSY0045,and 2023YFSY0002)+1 种基金the Chunhui Plan of Ministry of Education,Fundamental Research Funds for the Central Universities,China(No.YJ201893)the Foundation of Key Laboratory of Lidar and Device,Sichuan Province,China(No.LLD2023-006)。
文摘Nowadays,force sensors play an important role in industrial production,electronic information,medical health,and many other fields.Two-dimensional material-based filed effect transistor(2D-FET)sensors are competitive with nano-level size,lower power consumption,and accurate response.However,few of them has the capability of impulse detection which is a path function,expressing the cumulative effect of the force on the particle over a period of time.Herein we fabricated the flexible polymethyl methacrylate(PMMA)gate dielectric MoS_(2)-FET for force and impulse sensor application.We systematically investigated the responses of the sensor to constant force and varying forces,and achieved the conversion factors of the drain current signals(I_(ds))to the detected impulse(I).The applied force was detected and recorded by I_(ds)with a low power consumption of~30 nW.The sensitivity of the device can reach~8000%and the 4×1 sensor array is able to detect and locate the normal force applied on it.Moreover,there was almost no performance loss for the device as left in the air for two months.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874098 and 61974017)the Fundamental Research Project for Central Universities,China(Grant No.ZYGX2018J025).
文摘A robust electron device called the enhanced gated-diode-triggered silicon-controlled rectifier (EGDTSCR) for electrostatic discharge (ESD) protection applications has been proposed and implemented in a 0.18-μm 5-V/24-V BCD process. The proposed EGDTSCR is constructed by adding two gated diodes into a conventional ESD device called the modified lateral silicon-controlled rectifier (MLSCR). With the shunting effect of the surface gated diode path, the proposed EGDTSCR, with a width of 50 μm, exhibits a higher failure current (i.e., 3.82 A) as well as a higher holding voltage (i.e., 10.21 V) than the MLSCR.
基金supported by the National Natural Science Foundation of China (Grant No. 61904110)。
文摘A novel structure of low-voltage trigger silicon-controlled rectifiers(LVTSCRs) with low trigger voltage and high holding voltage is proposed for electrostatic discharge(ESD) protection. The proposed ESD protection device possesses an ESD implant and a floating structure. This improvement enhances the current discharge capability of the gate-grounded NMOS and weakens the current gain of the silicon-controlled rectifier current path. According to the simulation results, the proposed device retains a low trigger voltage characteristic of LVTSCRs and simultaneously increases the holding voltage to 5.53 V, providing an effective way to meet the ESD protection requirement of the 5 V CMOS process.
基金the National Natural Science Foundation of China(U21A20497)Singapore National Research Foundation Investigatorship(Grant No.NRF-NRFI08-2022-0009)。
文摘The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A6004,62375160,62274180,and 12004389).
文摘The exploration and research of low-cost,environmentally friendly,and sustainable organic semiconductor materials are of immense significance in various fields,including electronics,optoelectronics,and energy conversion.Unfortunately,these semiconductors have almost poor charge transport properties,which range from∼10^(−4) cm^(2)·V^(−1)·s^(−1) to∼10^(−2) cm^(2)·V^(−1)·s^(−1).Vat orange 3,as one of these organic semiconductors,has great potential due to its highly conjugated structure.We obtain high-quality multilayered Vat orange 3 crystals with two-dimensional(2D)growth on h-BN surfaces with thickness of 10–100 nm using physical vapor transport.Raman’s results confirm the stability of the chemical structure of Vat orange 3 during growth.Furthermore,by leveraging the structural advantages of 2D materials,an organic field-effect transistor with a 2D vdW vertical heterostructure is further realized with h-BN encapsulation and multilayered graphene contact electrodes,resulting in an excellent transistor performance with On/Off ratio of 104 and high field-effect mobility of 0.14 cm^(2)·V^(−1)·s^(−1).Our results show the great potential of Vat orange 3 with 2D structures in future nano-electronic applications.Furthermore,we showcase an approach that integrates organic semiconductors with 2D materials,aiming to offer new insights into the study of organic semiconductors.
基金Project supported by the National Natural Science Foundation of China(Grant No.12075316)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.21XNH091)(Q.R.)。
文摘Thermal transistor,the thermal analog of an electronic transistor,is one of the most important thermal devices for microscopic-scale heat manipulating.It is a three-terminal device,and the heat current flowing through two terminals can be largely controlled by the temperature of the third one.Dynamic response plays an important role in the application of electric devices and also thermal devices,which represents the devices’ability to treat fast varying inputs.In this paper,we systematically study two typical dynamic responses of a thermal transistor,i.e.,the response to a step-function input(a switching process)and the response to a square-wave input.The role of the length L of the control segment is carefully studied.It is revealed that when L is increased,the performance of the thermal transistor worsens badly.Both the relaxation time for the former process and the cutoff frequency for the latter one follow the power-law dependence on L quite well,which agrees with our analytical expectation.However,the detailed power exponents deviate from the expected values noticeably.This implies the violation of the conventional assumptions that we adopt.
基金supported by National Key Research and Development Program(2021YFB3600802)Shenzhen Municipal Scientific Program(JSGG20220831103803007,SGDX20211123145404006)Guangdong Basic and Applied Basic Research Foundation(2022A1515110029)
文摘This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojunction band diagram of InZnO bilayer was modified by the cation composition to form the two-dimensional electron gas(2DEG)at the interface quantum well,as verified using a metal−insulator−semiconductor(MIS)device.Although the 2DEG indeed contributes to a higher mobility than the monolayer channel,the competition and cooperation between the gate field and the built-in field strongly affect such mobility-boosting effect,originating from the carrier inelastic collision at the heterojunction interface and the gate field-induced suppression of quantum well.Benefited from the proper energy-band engineering,a high mobility of 84.3 cm2·V^(−1)·s^(−1),a decent threshold voltage(V_(th))of−6.5 V,and a steep subthreshold swing(SS)of 0.29 V/dec were obtained in InZnO-based heterojunction TFT.
基金supported by the National Key R&D Plan of China(Grant 2021YFB3600703)the National Natural Science Foundation(Grant 62204137)of China for Youth,the Open Research Fund Program of Beijing National Research Centre for Information Science and Technology(BR2023KF02009)+1 种基金the National Natural Science Foundation of china(U20A20168,61874065,and 51861145202)the Research Fund from Tsinghua University Initiative Scientific Research Program,the Center for Flexible Electronics Technology of Tsinghua University,and a grant from the Guoqiang Institute,Tsinghua University.
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1202600 and 2023YFE0208600)in part by the National Natural Science Foundation of China (Grant Nos. 62174082, 92364106, 61921005, 92364204, and 62074075)。
文摘Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.
基金Project supported by the National Natural Science Foundation of China (Grant No.12065015)the Hongliu Firstlevel Discipline Construction Project of Lanzhou University of Technology。
文摘The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.
基金sponsored by the Regional Joint Fund of the National Science Foundation of China via Grant No. U21A20492the National Natural Science Foundation of China (NSFC) via Grant No. 62275041+2 种基金the Sichuan Science and Technology Program via Grant Nos. 2022YFH0081, 2022YFG0012 and 2022YFG0013the Sichuan Youth Software Innovation Project Funding via Grant No. MZGC20230068the Sichuan Province Key Laboratory of Display Science and Technology。
文摘Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications.
基金funded in part by the National Key R&D Program of China(Grant No.2022YFB3606900)in part by the National Natural Science of China(Grant No.62004217)。
文摘In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment.
基金financial support from NSFC(21704082,21875182,22109125)Key Scientific and Technological Innovation Team Project of Shaanxi Province(2020TD-002)+2 种基金111 Project 2.0(BP2018008)National Key Research and Development Program of China(2022YFE0132400)China Postdoctoral Science Foundation(2021M702585).
文摘The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits to sensitive biosensors,and neuromorphic devices like artificial synapses and organic electrochemical random-access memories.Despite recent strides in enhancing OECT performance,driven by the demand for superior transient response capabilities,a comprehensive understanding of the complex interplay between charge and ion transport,alongside electron–ion interactions,as well as the optimization strategies,remains elusive.This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses,emphasizing advancements in device physics and optimization approaches.We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications,as well as the impact of materials,morphology,device structure strategies on optimizing transient responses.This paper not only offers a detailed overview of the current state of the art,but also identifies promising avenues for future research,aiming to drive future performance advancements in diversified applications.
基金Funded by the Key R&D Program of the Science and Technology Department of Hubei Province(No.2022BCE008)。
文摘Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.
基金supported by the National Key R&D Program of China(2017YFE0131900)the Natural Science Foundation of Chongqing,China(CSTB2023NSCQ-LZX0087)the National Natural Science Foundation of China(62204242,62005182).
文摘The integration between infrared detection and modern microelectronics offers unique opportunities for compact and high-resolution infrared imaging.However,silicon,the cornerstone of modern microelectronics,can only detect light within a limited wavelength range(<1100 nm)due to its bandgap of 1.12 eV,which restricts its utility in the infrared detection realm.Herein,a photo-driven fin field-effect transistor is presented,which breaks the spectral response constraint of conventional silicon detectors while achieving sensitive infrared detection.This device comprises a fin-shaped silicon channel for charge transport and a lead sulfide film for infrared light harvesting.The lead sulfide film wraps the silicon channel to form a“three-dimensional”infrared-sensitive gate,enabling the photovoltage generated at the lead sulfide-silicon junction to effectively modulate the channel conductance.At room temperature,this device realizes a broadband photodetection from visible(635 nm)to short-wave infrared regions(2700 nm),surpassing the working range of the regular indium gallium arsenide and germanium detectors.Furthermore,it exhibits low equivalent noise powers of 3.2×10^(-12) W·Hz^(-1/2) and 2.3×10^(-11) W·Hz^(-1/2) under 1550 nm and 2700 nm illumination,respectively.These results highlight the significant potential of photo-driven fin field-effect transistors in advancing uncooled silicon-based infrared detection.
文摘An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wide frequency range due to the RC network. The power characteristics of the device as measured by a loadpull system show that the large-signal performance of the power transistor is affected slightly by the RC network. Psat is 30dBm at 5.4GHz,and PldB is larger than 21.6dBm at llGHz. The stability of the device due to RC network is proved by a power combination circuit. This makes the power transistor very suitable for applications in microwavc high power ttBT amplifiers.
文摘Transparent zinc oxide thin film transistors (ZnO-TFTs) with bottom-gate and top-gate structures were constructed on 50mm silica glass substrates. The ZnO films were deposited by RF magnetron sputtering and SiO2 films served as the gate insulator layer. We found that the ZnO-TFTs with bottom-gate structure have better electrical performance than those with top-gate structure. The bottom-gate ZnO-TFTs operate as an n-channel enhancement mode, which have clear pinch off and saturation characteristics. The field effect mobility, threshold voltage, and the current on/off ratio were determined to be 18.4cm^2/(V ·s), - 0. 5V and 10^4 , respectively. Meanwhile, the top-gate ZnO-TFTs exhibit n-chan- nel depletion mode operation and no saturation characteristics were detected. The electrical difference of the devices may be due to the different character of the interface between the channel and insulator layers. The two transistors types have high transparency in the visible light region.
文摘Si based single electron transistor (SET) is fabricated successfully on p type SIMOX substrate,based on electron beam (EB) lithography,reactive ion etching (RIE) and thermal oxidation.In particular,using thermal oxidation and etching off the oxide layer,a one dimensional Si quantum wire can be converted into several quantum dots inside quantum wire in connection with the source and drain regions.The differential conductance (d I ds /d V ds ) oscillations and the Coulomb staircases in the source drain current ( I ds ) are shown clearly dependent on the source drain voltage at 5 3K.The I ds V gs (gate voltage) oscillations are observed from the I ds V gs characteristics as a function of V gs at different temperatures and various values of V ds .For a SET whose total capacitance is about 9 16aF,the I ds V gs oscillations can be observed at 77K.
文摘Both nMOS and pMOS transistors with two-edged and multi-finger layouts are fabricated in a standard commercial 0.6μm CMOS/bulk process to study their total ionizing dose (TID) radiation effects. The leakage current, threshold voltage shift, and transconductance of the devices are monitored before and after T-ray irradiation. Different device bias conditions are used during irradiation. The experiment results show that TID radiation effects on nMOS devices are very sensitive to their layout structures. The impact of the layout on TID effects on pMOS devices is slight and can be neglected.
文摘A new low power quasi adiabatic logic,complementary pass transistor adiabatic logic (CPAL),is presented.The CPAL circuit is driven by a new three phase power clock,and its non adiabatic loss on output loads can be effectively reduced by using complementary pass transistor logic and transmission gates.Furthermore,the minimization of the energy consumption can be obtained by choosing the optimal size of bootstrapped nMOS transistors,thus it has more efficient energy transfer and recovery.A three phase power supply generator with a small control logic circuit and a single inductor is proposed.An 8 bit adder based on CPAL is designed and verified.With MOSIS 0 25μm CMOS technology,the CPAL adder consumes only 35% of the dissipated energy of a 2N 2N2P adder and is about 50% of the dissipated energy of a PFAL adder for clock rates ranging from 50 to 200MHz.