Flexible supercapacitors are promising energy storage devices in wearable smart electronics. Exploring cost-efficient electrodes with high capacitance would promote the wide-scale application of such capacitors. Herei...Flexible supercapacitors are promising energy storage devices in wearable smart electronics. Exploring cost-efficient electrodes with high capacitance would promote the wide-scale application of such capacitors. Herein, in order to explore a methodology for preparing low cost, flexible, tough, and up-scalable supercapacitor electrodes, silk textile is directly carbonized to make a conductive free-standing textile substrate. Through mildly baking the surfactant-free TiCTflakes suspension loaded on the carbonized silk cloth, a uniform and adhesive coating consisting of nanometer-thick TiCTflakes is well established on the conductive fabric support, forming a MXene-coated flexible textile electrode. The fabricated electrode exhibits a high areal capacitance of 362 m F/cm~2 with excellent cyclability and flexibility. Moreover,capacitance changes neglegibly under the bending deformation mode. This study elucidates the feasibility of using silk-derived carbon cloth from biomss for MXene-based flexible supercapacitor.展开更多
基金supported by the Youth Innovation Promotion Association,Chinese Academy of Sciences(CAS)under grant no.2011152Shenyang National Laboratory for Materials Science,Institute of Metal Research,CAS,under grant no.2017RP06
文摘Flexible supercapacitors are promising energy storage devices in wearable smart electronics. Exploring cost-efficient electrodes with high capacitance would promote the wide-scale application of such capacitors. Herein, in order to explore a methodology for preparing low cost, flexible, tough, and up-scalable supercapacitor electrodes, silk textile is directly carbonized to make a conductive free-standing textile substrate. Through mildly baking the surfactant-free TiCTflakes suspension loaded on the carbonized silk cloth, a uniform and adhesive coating consisting of nanometer-thick TiCTflakes is well established on the conductive fabric support, forming a MXene-coated flexible textile electrode. The fabricated electrode exhibits a high areal capacitance of 362 m F/cm~2 with excellent cyclability and flexibility. Moreover,capacitance changes neglegibly under the bending deformation mode. This study elucidates the feasibility of using silk-derived carbon cloth from biomss for MXene-based flexible supercapacitor.