期刊文献+
共找到4,174篇文章
< 1 2 209 >
每页显示 20 50 100
Microstructure Features and the Macroscopic Acoustic Behavior of Gassy Silt in the Yellow River Delta
1
作者 LIU Tao GUO Zhenqi +3 位作者 ZHANG Yan WU Chen LIU Lele DENG Shenggui 《Journal of Ocean University of China》 CAS CSCD 2024年第2期371-382,共12页
The morphological changes in isolated bubbles in gassy silt play a critical role in the microscopic structures between soil particles and bubbles and macroscopic physical properties.Based on X-ray CT scanning experime... The morphological changes in isolated bubbles in gassy silt play a critical role in the microscopic structures between soil particles and bubbles and macroscopic physical properties.Based on X-ray CT scanning experiments under various vertical loads(four levels),self-designed acoustic macro experiments,and a series of formula revisions to the macro-air-bearing silt sound-velocity prediction model,this paper discusses the macro-and micro-scale features of gassy silts from the Yellow River Delta.The samples consisted of different proportions of silt from the Yellow River Delta and porous media,and they were used to form two types of aerosol silts with initial gas contents of 4.23%and 7.67%.The results show that the air bubble content and external load considerably affect the microstructural parameters and acoustic behavior of gassy silt in the Yellow River Delta.The macroscopic sound velocity showed a linear positive correlation with vertical load and relation to microstructural parameters in varying manners and degrees.Based on the traditional Biot-Stoll acoustic model,the gas-phase medium coefficient was introduced for the proper calculation and prediction of the sound velocity of air-bearing silt.The errors of the overall prediction varied between 5.6%and 9.6%. 展开更多
关键词 gassy silt vertical load microstructure parameters bubble vibration Biot-Stoll acoustic model
下载PDF
Sensitivity Analysis of Multi-phase Seepage Parameters Affecting the Clayey Silt Hydrate Reservoir Productivity in the Shenhu Area,South China Sea 被引量:1
2
作者 LI Yaobin XU Tianfu +3 位作者 XIN Xin ZANG Yingqi ZHU Huixing YUAN Yilong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1787-1800,共14页
Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately ... Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately predict the productivity of hydrate-bearing sediments(HBS).The multi-phase seepage parameters of HBS include permeability,porosity,which is closely related to permeability,and hydrate saturation,which has a direct impact on hydrate content.Existing research has shown that these multi-phase seepage parameters have a great impact on HBS productivity.Permeability directly affects the transmission of pressure-drop and discharge of methane gas,porosity and initial hydrate saturation affect the amount of hydrate decomposition and transmission process of pressure-drop,and also indirectly affect temperature variation of the reservoir.Considering the spatial heterogeneity of multi-phase seepage parameters,a depressurization production model with layered heterogeneity is established based on the clayey silt hydrate reservoir at W11 station in the Shenhu Sea area of the South China Sea.Tough+Hydrate software was used to calculate the production model;the process of gas production and seepage parameter evolution under different multi-phase seepage conditions were obtained.A sensitivity analysis of the parameters affecting the reservoir productivity was conducted so that:(a)a HBS model with layered heterogeneity can better describe the transmission process of pressure and thermal compensation mechanism of hydrate reservoir;(b)considering the multi-phase seepage parameter heterogeneity,the influence degrees of the parameters on HBS productivity were permeability,porosity and initial hydrate saturation,in order from large to small,and the influence of permeability was significantly greater than that of other parameters;(c)the production potential of the clayey silt reservoir should not only be determined by hydrate content or seepage capacity,but also by the comprehensive effect of the two;and(d)time scales need to be considered when studying the effects of changes in multi-phase seepage parameters on HBS productivity. 展开更多
关键词 energy resources natural gas hydrate sensitivity analysis seepage parameters clayey silt reservoir Pearl River Mouth Basin
下载PDF
Factors Influencing the Thermal Conductivity of Silt in the Yellow River Delta
3
作者 YANG Xiuqing DENG Shenggui +2 位作者 GUO Lei ZHANG Yan LIU Tao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第4期1003-1011,共9页
The thermal conductivity of marine sediments is an important thermophysical parameter in the study of seafloor heat flow and marine engineering construction.Understanding the effect of thermal conductivity of marine s... The thermal conductivity of marine sediments is an important thermophysical parameter in the study of seafloor heat flow and marine engineering construction.Understanding the effect of thermal conductivity of marine sediments in the environment has a major engineering value and theoretical significance.In this work,a modified test method was used to measure the thermal conductivity of silt in the Yellow River Delta under different void ratios,moisture contents,temperatures,and salinities.Results showed that the thermal conductivity of silt in the Yellow River Delta decreased with the increase in the void ratio and increased with the water content.Compared with sand and clay,silt in the Yellow River Delta was the least affected by the void ratio and moisture content.Under low temperatures,the heat transfer of soil was controlled by the average velocity of the phonons;therefore,the thermal conductivity of silt in the Yellow River Estuary increased with temperature.The thermal conductivity of pore water decreased with increasing salinity.Moreover,certain salinity levels resulted in a phenomenon known as the‘compressing twin electrical layer’,which led to an increase in the contact area between soil particles.With the increase in salinity,the thermal conductivity of silt in the Yellow River Delta experiences an initial decline and a subsequent increase.The proposed thermal conductivity test method is more accurate than the existing technique,and the findings provide a basis for further study on the thermal characteristics of submarine sediments. 展开更多
关键词 silt in the Yellow River Delta thermal conductivity void ratio water content TEMPERATURE SALINITY
下载PDF
Strength and deformation behavior of the Yellow River silt under triaxial drained condition considering characteristic states
4
作者 CHEN Yu-yuan WANG Yu-ke +1 位作者 Hemanta HAZARIKA WAN Yong-shuai 《Journal of Mountain Science》 SCIE CSCD 2023年第1期273-284,共12页
Currently,the application of the Yellow River silt in subgrade,especially in expressway subgrade,has not been widely promoted.The main reason is that the research on the mechanical characteristics of the Yellow River ... Currently,the application of the Yellow River silt in subgrade,especially in expressway subgrade,has not been widely promoted.The main reason is that the research on the mechanical characteristics of the Yellow River silt used for subgrade filling is extremely limited.In this study,the static shear test of the Yellow River silt under drained condition was carried out using Global Digital Systems(GDS)triaxial apparatus,and the effects of confining pressure,relative density and shear rate on the strength and deformation behavior of the Yellow River silt were investigated.The cohesive force of the Yellow River silt is low,and the friction angle is the main factor determining the shear strength.Friction angle at phase transformation stateφpt,friction angle at peak stateφps,friction angle at critical stateφcs,were obtained via the observation on the evolution law of mobilized friction angle during the whole shearing process.The friction angles corresponding to three different characteristic states have the following magnitude relationship,namelyφps>φcs>φpt.The strength parameters for low-grade subgrade and highgrade subgrade were chosen to be 29.33°and 33.75°.The critical state line(CSL),envelop of phase transformation(EOP),and envelop of dilatancy(EOD)for three different characteristic states were determined.The critical stress ratio M,the phase transformation stress ratio Mptand the dilatancy stress ratio Mdof the Yellow River silt are 1.199,1.235,1.152,respectively.These results provide a basis for the mechanical analysis of the Yellow River silt subgrades and the subsequent establishment of dynamic constitutive model of the Yellow River silt. 展开更多
关键词 Yellow River silt Stress-strain relationship Shear resistance Friction angle
下载PDF
Study on Mechanical Properties of High Fine Silty Basalt Fiber Shotcrete Based on Orthogonal Design
5
作者 Jinxing Wang Yingjie Yang +5 位作者 Xiaolin Yang Huazhe Jiao Qi Wang Liuhua Yang Jianxin Yu Fengbin Chen 《Journal of Renewable Materials》 EI 2023年第8期3351-3370,共20页
In order to improve the comprehensive utilization rate of highfines sand(HFS)produced by the mine,full solid waste shotcrete(HFS-BFRS)was prepared with HFS asfine aggregate in cooperation with basaltfiber(BF).The strengt... In order to improve the comprehensive utilization rate of highfines sand(HFS)produced by the mine,full solid waste shotcrete(HFS-BFRS)was prepared with HFS asfine aggregate in cooperation with basaltfiber(BF).The strength growth characteristics of HFS-BFRS were analyzed.And thefitting equation of compressive strength growth characteristics of HFS-BFRS under the synergistic effect of multiple factors was given.And based on the orthogonal experimental method,the effects on the compressive strength,splitting tensile strength andflex-ural strength of HFS-BFRS under the action of different levels of influencing factors were investigated.The effect of three factors on the mechanical properties of HFS-BFRS,3,and 28 d,respectively,was revealed by choosing the colloidal sand ratio(C/H),basaltfiber volume fraction(BF Vol)and naphthalene high-efficiency water reducing agent(FDN)as the design variables,combined with indoor tests and theoretical analysis.The results show that the sensitivity of the three factors on compressive strength andflexural strength is C/H>FDN>BF Vol,and split-ting tensile strength is BF Vol>FDN>C/H.Finally,thefitting ratio of HFS-BFRS was optimized by the factor index method,and the rationality was verified by thefield test.For thefluidity of HFS-BFRS,the slump can be improved by 139%under the action of 1.2%FDN,which guarantees the pump-ability of HFS-BFRS. 展开更多
关键词 Solid wastes recycling high-fine silt basaltfiber total solid waste shotcrete orthogonal design
下载PDF
Silting模的一个推广
6
作者 何东林 李煜彦 《四川理工学院学报(自然科学版)》 CAS 2019年第5期76-79,共4页
基于Angeleri Hügel等人提出的silting模的概念,以及Breaz等人对silting模生成的torsion类的研究,给出了n-silting模的定义.称左R模T是n-silting模,如果存在正合列Pn+1→Pn→…→P2→P1→T→0,其中Pi(1≤i≤n+1)为投射模,且Presn(T... 基于Angeleri Hügel等人提出的silting模的概念,以及Breaz等人对silting模生成的torsion类的研究,给出了n-silting模的定义.称左R模T是n-silting模,如果存在正合列Pn+1→Pn→…→P2→P1→T→0,其中Pi(1≤i≤n+1)为投射模,且Presn(T)=Dσ.n-silting模是silting模的一个推广,1-silting模与silting模是一致的.利用环模理论和同调代数的方法,研究了n-silting模的若干性质和等价刻画,得出当T是n-silting模时,Presn(T)=Gen(T)=Dσ■T^⊥i≥n成立,其中Dσ={X∈R-Mod| HomR(σ,X)是满同态}.并讨论了n-silting模与n-tilting模之间的关系,结果表明,如果存在左R模正合列0→Pn+1^σ→Pn→…→P2→P1→T→0且Dσ■T^⊥i≥n,其中Pi(1≤i≤n+1)为投射模,那么以下说法等价:(1)T是n-silting模;(2)T是n-tilting模. 展开更多
关键词 silting模 n-silting模 n-tilting模 正合列
下载PDF
Simulation and Analysis of Back Siltation in a Navigation Channel Using MIKE 21 被引量:1
7
作者 ZHANG Kuncheng LI Qingjie +4 位作者 ZHANG Jing SHI Hongyuan YU Jing GUO Xinchang DU Yonggang 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第4期893-902,共10页
The channel back-siltation problem has been restricting the development of channels,and its monitoring is limited by funds and natural conditions.Moreover,predicting the channel back-siltation situation in a timely an... The channel back-siltation problem has been restricting the development of channels,and its monitoring is limited by funds and natural conditions.Moreover,predicting the channel back-siltation situation in a timely and accurate manner is difficult.Hence,a numerical simulation of the back-siltation problem in the sea area near the channel is of great significance to the maintenance of a channel.In this study,the back siltation of a deep-water channel in the Lanshan Port area of the Port of Rizhao after dredging is predicted.This paper relies on the MIKE 21 software to establish the wave,tidal current,and sediment numerical models and uses measured data from two observation stations in the study area for verification.On this basis,taking one month as an example,the entire project channel was divided into five sections,and three observation points were set on each section.The results show that the area with offshore siltation is located in the northerly direction of the artificial anti-wave building.Siltation occurred on the northern seabed in the sea a little farther from the shore.Siltation occurred on the seabed surface far away from the shoreline,and with the increase in the distance from the shoreline,the amount of siltation in the south,center,and north became gradually closed,and the results can be used to guide actual engineering practices.This study will play a positive role in promoting the dredging project of Rizhao Lanshan Port. 展开更多
关键词 channel back siltation numerical simulation back silting analysis and prediction
下载PDF
Holocene Yellow Silt Layers and the Paleoclimate Event of 8200 a B.P.in Lop Nur,Xinjiang,NW China 被引量:11
8
作者 LIUChenglin WANGMili +2 位作者 JIAOPengcheng LIShude CHENYongzhi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第4期514-518,共5页
Many yellow silt layers have been identified in the Holocene sediments in the last lake of Lop Nur (playa), Xinjiang, northwestern China. Statistics of drill-hole cores have revealed more than one hundred layers, whic... Many yellow silt layers have been identified in the Holocene sediments in the last lake of Lop Nur (playa), Xinjiang, northwestern China. Statistics of drill-hole cores have revealed more than one hundred layers, which exhibit regularity in time sequence. Study has further verified that these yellow silt layers were deposited through eolian processes. The time-frequency distribution diagram shows an obvious peak occurring at about 8200 a B.P., which is consistent with the dry, windy and cold climate event occurring at 8200 a in other places around the world. Therefore, this event is regarded as a response to the global climate change. 展开更多
关键词 Yellow silt layers HOLOCENE EOLIAN Lop Nur XINJIANG northwestern China
下载PDF
Analysis of Wave-Induced Liquefaction in Seabed Deposits of Silt 被引量:4
9
作者 高玉峰 沈扬 +1 位作者 张健 黎冰 《China Ocean Engineering》 SCIE EI 2011年第1期31-44,共14页
The dynamic stress introduced in half elastic space by wave loading is characterized by the equation between the magnitude of half cyclic axial stress and cyclic torsion shear stress and the principal stress, whose di... The dynamic stress introduced in half elastic space by wave loading is characterized by the equation between the magnitude of half cyclic axial stress and cyclic torsion shear stress and the principal stress, whose direction rotates continuously and compression stress on seabed can be calculated by the use of small amplitude wave theory. With relationship curves of saturated silt of liquefaction cycles and cyclic stress ratios obtained by cyclic triaxial-torsional coupling shear tests and curve fitting method to different data points of relative density, it is suggested that the cyclic stress ratio corresponding to constant liquefaction impedance be taken as the critical cyclic stress ratio which implies liquefaction. There exists a linear relationship between critical cyclic stress ratio and relative density under different relative densities. Empirical formula for critical cyclic stress ratios of seabed liquefaction induced by wave loading under different relative densities is established. The possibility of seabed silt liquefaction and its influence factors are analyzed based on the small-amplitude wave theory and the data acquired in laboratory tests. 展开更多
关键词 wave loading seabed liquefaction silt triaxial-torsional coupling shear critical cyclic stress ratio
下载PDF
Development of Cementitious Materials Utilizing Alkali-activated Yellow River Silt 被引量:5
10
作者 王宝民 WANG Wanli +5 位作者 梁晓霞 刘慧 HAN Junnan ZHAO Lu YANG Xingxing YAN Jifei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第3期364-373,共10页
The possibility of preparing cementitious materials by the alkali-activated method using Yellow River sediment(The second largest river in China)as raw material and the modification effect on different slag addition w... The possibility of preparing cementitious materials by the alkali-activated method using Yellow River sediment(The second largest river in China)as raw material and the modification effect on different slag addition were investigated.Sodium silicate and calcium hydroxide were used as the activator,and the specimens were prepared by the press molding method.The hydration process,hydration products,pore characteristics,and mechanical properties were investigated using SEM/EDS,FTIR,TG/DTG,XRD,MIP,and uniaxial compressive strength experiments,respectively.The results showed that the compressive strength of the modified yellow river silt-based cementitious material was significantly increased when the water glass dosage was 12 wt%(Ms=1.8)and the slag dosage was 40%,and its 90-day maximum compressive strength could reach 53 MPa. 展开更多
关键词 yellow river silt alkali-activation blast-furnace slag compression molding
下载PDF
Large borehole with multi-lateral branches: A novel solution for exploitation of clayey silt hydrate 被引量:10
11
作者 Yan-long Li Yi-zhao Wan +5 位作者 Qiang Chen Jia-xin Sun Neng-you Wu Gao-wei Hu Fu-long Ning Pei-xiao Mao 《China Geology》 2019年第3期333-341,共9页
Raising the in situ decomposition rate of natural gas hydrate and increasing the decomposition contact area are two main ways to raise the productivity of hydrate. An exploitation technique based on large borehole wit... Raising the in situ decomposition rate of natural gas hydrate and increasing the decomposition contact area are two main ways to raise the productivity of hydrate. An exploitation technique based on large borehole with multi-lateral branches (LB & MB) was proposed in this paper. This technique is mainly intended for the clayey silt hydrate reservoir in the South China Sea, and its main purpose is to alleviate the sand output from formation for maintaining the stability of the reservoir and to greatly increase the gas productivity of the reservoir. In this paper, the following aspects were mainly expounded: definition of the basic geometric parameters for layout of multi-lateral branches in clayey silt hydrate reservoir, simulation of the stimulation effect of a typical well profile with two branches, and prediction and simulation of the reservoir failure risk in a well profile with eight branches. The results show that the LB & MB effectively improves the flow field in the formation, raises the productivity of the reservoir and may also help to decrease the produced water-gas ratio (WGR). When the lateral branches spacing is too small, the failure zones around adjacent lateral branches overlap each other, possibly causing reservoir failure in a larger range. Therefore, the geometric parameters of multi-lateral branches depend on the dual control of the productivity and geotechnical risk factor of reservoir. Further study is being carried out, so as to obtain the optimal combination of parameters of multi-lateral branches. 展开更多
关键词 Natural gas HYDRATE Clayey silt Multi-lateral BRANCHES STIMULATION Numerical simulation HYDRATE exploration engineering South China Sea China
下载PDF
Mechanical performances and microstructural characteristics of reactive MgO-carbonated silt subjected to freezing-thawing cycles 被引量:5
12
作者 Guanghua Cai Songyu Liu +3 位作者 Guangyin Du Zhen Chen Xu Zheng Jiangshan Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期875-884,共10页
The characteristics of reactive magnesia(MgO)-carbonated silt in respect to long-term stability have not been well understood in severely cold climate despite the usage of reactive MgO in enhancing the engineering per... The characteristics of reactive magnesia(MgO)-carbonated silt in respect to long-term stability have not been well understood in severely cold climate despite the usage of reactive MgO in enhancing the engineering performances.Under the binder content of 15%and initial water content of 25%,MgO-admixed silt specimens were carbonized for 3 h and 6 h and then subjected to different numbers of freezingthawing(F-T)cycles.After different F-T cycles,the physico-mechanical properties of MgO-carbonated silt were analyzed in comparison with Portland cement(PC)-stabilized silt through physical and unconfined compression tests.Besides,a series of micro tests on MgO-carbonated specimens was performed including X-ray diffraction(XRD),scanning electron microscopy(SEM)and mercury intrusion porosimetry(MIP)tests.The results demonstrate that both mass change ratio and moisture content of carbonated/stabilized silt decrease,and these values of MgO-carbonated silt are significantly lower while the density is higher compared to PC-stabilized silt.The strengths and moduli of MgO-carbonated silt are still two times higher than those of PC-stabilized specimens and the strength change ratio of keeps above0.8 after F-T cycles.There is no visible transformation between nesquehonite and dypingite/hydromagnesite,although the XRD peaks of nesquehonite decrease and the bonding and filling effects weaken slightly.After 6 and 10 F-T cycles,the pore-size characteristics changed from a unimodal distribution to a three-peak and bimodal distribution,respectively.The total,macro and large pore volumes increase obviously while the medium and small pore volumes decrease except for intra-aggregate pore.The findings show better F-T durability of MgO-carbonated silt,which would be helpful for facilitating the application of MgO carbonation in the soil treatment. 展开更多
关键词 Reactive magnesia(MgO) Freezing-thawing(F-T)cycle Carbonated/stabilized silt Engineering performance Microstructural characteristics
下载PDF
Salinity effect on the compaction behaviour,matric suction,stiffness and microstructure of a silty soil 被引量:2
13
作者 Zi Ying Yu-Jun Cui +1 位作者 Nadia Benahmed Myriam Duc 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第4期855-863,共9页
To better understand the salinity effect on the compaction behaviour of soil,standard Proctor compaction test was conducted on soil samples with different salinities.Matric suction and small-strain shear modulus,G_(ma... To better understand the salinity effect on the compaction behaviour of soil,standard Proctor compaction test was conducted on soil samples with different salinities.Matric suction and small-strain shear modulus,G_(max),were determined and pore size distribution was also investigated on samples statically compacted at different water contents.Results showed that with the decrease of soil salinity from initial value of 2.1‰(g of salt/kg of dry soil)to zero,the maximum dry density increased and the optimum water content decreased,whereas there was no significant change with the increase of soil salinity from 2.1‰ to 6.76‰.Interestingly,it was observed that G_(max) also decreased when the soil salinity decreased from initial value of 2.1‰ to zero and kept almost constant when the soil salinity increased from 2.1‰ to 6.76‰,for dry samples with similar matric suction and also for samples compacted at optimum state and on wet side whose matric suctions were slightly different due to the difference in remoulded water content.Furthermore,the effect of salinity on compaction behaviour and G_(max) decreased for samples compacted from dry side to wet side.The pore size distribution exhibited bi-modal characteristics with two populations of micro-and macro-pores not only for samples compacted on dry side and at optimum state,but also for those compacted on wet side.Further examination showed that the modal size of micro-pores shifted to lower values and that of macro-pores shifted to higher values for saline soil compared to the soil without salt. 展开更多
关键词 siltS COMPACTION SUCTION STIFFNESS MICROSTRUCTURE
下载PDF
CALCULATION AND PREDICTION FOR MUDDY BEACH PROTECTION AND SILTATION ACCELERATION 被引量:1
14
作者 Liu, Jiaju Yu, Guohua 《China Ocean Engineering》 SCIE EI 1990年第1期55-64,共10页
This paper firstly deals with the two different siltation patterns with siltation accelerating project on sandy beach and muddy beach, and then puts forward the calculation method for siltation of the project on muddy... This paper firstly deals with the two different siltation patterns with siltation accelerating project on sandy beach and muddy beach, and then puts forward the calculation method for siltation of the project on muddy beach based on the behavior of suspension and settlement of fine sediment particles. This method not only can qualitatively explain quite a number of natural phenomena, but also is examined by practical projects. Therefore, this method is of important practical significance in the practice of foreshore reclamation and beach protection as well as siltation acceleration. 展开更多
关键词 SOILS silt Water Waves Wave Effects
下载PDF
Characteristics of Pore Water Pressure of Saturated Silt Under Wave Loading 被引量:1
15
作者 高玉峰 张健 +1 位作者 沈扬 闫俊 《China Ocean Engineering》 SCIE EI 2010年第1期161-172,共12页
The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were peffo... The characteristics of dynamic stress in the seabed under wave loading are constant principal stress and continuous rotation of the principal stress direction. Cyclic triaxial-torsional coupling shear tests were pefformed on saturated silt by the hollow cylinder apparatus under different relative densities, deviator stress ratios and vibration frequencies to study the development of pore water pressure of the saturated silt under wave loading. It was found that the development of pore water pressure follows the trend of "fast - steady - drastic". The turning point from fast to steady stage is not affected by relative density and deviator stress ratio. However, the turning point from steady to drastic stage relies on relative density and deviator stress ratio. The vibration cycle for the liquefaction of saturated silt decreases with increasing deviator stress ratio and increases with relative density. The vibration cycle for the liquefaction of the saturated silt increases with vibration frequency and reaches a peak value, after which it decreases with increasing vibration frequency for the relative density of 70%. But the vibration cycle for the liquefaction of saturated silt increases with vibration frequency for the relative density of 30%. The development of pore water pressure of the saturated silt is influenced by relative density and vibration frequency. 展开更多
关键词 silt wave loading pore water pressure vibration frequency cyclic triaxial-torsional coupling shear rotation of principal stress
下载PDF
Sedimentary Changes of a Sand Layer in Liquefied Silts 被引量:1
16
作者 REN Yupeng ZENG Yu +1 位作者 XU Xingbei XU Guohui 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第5期1046-1054,共9页
A flume experiment was conducted to investigate the restratification of liquefied sediment strata under a wave load with the focus on the interbedded strata of coarse and fine sediments formed in estuarine and coastal... A flume experiment was conducted to investigate the restratification of liquefied sediment strata under a wave load with the focus on the interbedded strata of coarse and fine sediments formed in estuarine and coastal areas.The aim of this research was to study the characteristics and processes of liquefied sediment strata in terms of wave-induced liquefaction.In the experiment,the bottom bed liquefied under the wave action and the liquefied soil moved in the same period with the overlying waves,and the track of the soil particles in the liquefied soil was an ellipse.The sand layer consisting of coarse particles in the upper part,settled into the lower silt layer.The sinking of coarse particles and upward migration of the fine particles of the lower layer induced by liquefied sediment fluctuations are the likely reasons for sedimentation of the sand layer in liquefied silt. 展开更多
关键词 storm-liquefied sediment strata LIQUEFACTION sand layer settlement silt interlayer particle sorting
下载PDF
Characteristics of dynamic strain and strength of frozen silt under long-term dynamic loading 被引量:1
17
作者 ShuPing Zhao Wei Ma +1 位作者 GuiDe Jiao XiaoXiao Chang 《Research in Cold and Arid Regions》 2011年第6期478-484,共7页
The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I an... The dynamic swain and strength of frozen silt under long-term dynamic loading are studied based on creep tests. Three groups of tests are performed (Groups I, II, and III). The initial deviator stresses of Groups I and II are same and the dynamic stress ampli- tude of Group II is twice as that of Group I. The minimum value of dynamic stress in Group IlI is near zero and its dynamic stress amplitude is larger than those of Groups I and II. In tests of all three groups there are similar change trends of accttmulative sWain, but with different values. The accumulative swain curves consist of three stages, namely, the initial stage, the steady stage, and the gradual flow stage. In the tests of Groups I and II, during the initial stage with vibration times less than 50 loops the strain ampli- tude decreased with the increase of vibration times and then basically remained constant, fluctuating in a very small range. For the tests of Group III, during the initial and steady stages the sWain amplitude decreased with the increase of vibration times, and then increased rapidly in the gradual flow stage. The dynamic strength of frozen silt decreases and trends to terminal dynamic strength as the vibration times of loading increase. 展开更多
关键词 frozen silt long-term dynamic loading accumulative strain strain amplitude residual strain dynamic strength
下载PDF
Effect of Penetration Rates on the Piezocone Penetration Test in the Yellow River Delta Silt 被引量:1
18
作者 ZHANG Jiarui MENG Qingsheng +4 位作者 ZHANG Yan FENG Xiuli WEI Guanli SU Xiuting LIU Tao 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第2期361-374,共14页
Partial drainage often occurs during piezocone penetration testing on Yellow River Delta silt because of its intermediate physical and mechanical properties between those of sand and clay.Yet,there is no accurate unde... Partial drainage often occurs during piezocone penetration testing on Yellow River Delta silt because of its intermediate physical and mechanical properties between those of sand and clay.Yet,there is no accurate understanding for the range of penetra-tion rates to trigger the partial drainage of silt soils.In order to fully investigate cone penetration rate effects under partial drainage condi-tions,indoor 1 g penetration model tests and numerical simulations of cavity expansion at variable penetration rates were carried out on the Yellow River Delta silt.The boundary effect of the model tests and the variation of key parameters at the different cavity ex-pansion rates were analyzed.The 1 g penetration model test results and numerical simulations results consistently indicated that the penetration rate to trigger the partially drainage of typical silt varied at least three orders of magnitude.The numerical simulations also provide the reference values for the penetration resistance corresponding to zero dilation and zero viscosity at any given normalized penetration rate for silt in Yellow River Delta.These geotechnical properties can be used for the design of offshore platforms in Yel-low River Delta,and the understanding of cone penetration rate effects under the partially drained conditions would provide some technical support for geohazard evaluation of offshore platforms. 展开更多
关键词 Yellow River Delta silt cone penetration rate effects 1g model simulation numerical analysis
下载PDF
Genesis,Distribution and Engineering Characteristics of Recently Deposited Silts in Huaibei Plain,Anhui Province
19
作者 Daoxiang Wu,Zhihai Wu,Guojun Shi,Guoqiang Wang 1.Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China. 2.School of Resources & Environmental Engineering,Hefei University of Technology,Hefei 230009,China 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期243-244,共2页
There are two different genetic types of recently deposited silts widely distributing in Huaibei Plain of Anhui Province:flooding deposited silt of Yellow River and Huaihe River.These recently deposited silts have the... There are two different genetic types of recently deposited silts widely distributing in Huaibei Plain of Anhui Province:flooding deposited silt of Yellow River and Huaihe River.These recently deposited silts have the following unique characteristics:new formation age,feeble consolidation degree。 展开更多
关键词 recently DEPOSITED silt engineering GEOLOGICAL characteristics bearing capacity Huaibei Plain
下载PDF
Correlations between silt density index,turbidity and oxidation-reduction potential parameters in seawater reverse osmosis desalination
20
作者 Seyed Mohammad Hossein Fayaz Roya Mafigholami +1 位作者 Fatemeh Razavian Karim Ghasemipanah 《Water Science and Engineering》 EI CAS CSCD 2019年第2期115-120,共6页
The reverse osmosis method is one of the most widely used methods of seawater desalination at present.Hydrophilic and desalting membranes in reverse osmosis systems are highly susceptible to the input pollutants.Vario... The reverse osmosis method is one of the most widely used methods of seawater desalination at present.Hydrophilic and desalting membranes in reverse osmosis systems are highly susceptible to the input pollutants.Various contaminants,including suspended organic and inorganic matter,result in membrane fouling and membrane degradation.Fundamental parameters such as the turbidity,the amount of chlorine injection,and silt density index (SDI) are the most predominant parameters of fouling control in the membranes.In this study,the operation system included a water intake unit,a pretreatment system,and an RO system.The pretreatment system encompassed a clarifier,a gravity sand filter,pressurized sand filters,and a cartridge filter.The correlation between the amount of chlorine injection in terms of the oxidation-reduction potential (ORP) and the SDI value of the input water was investigated at a specified site next to the Persian Gulf.The results showed that,at certain intervals of inlet turbidity,injection of a certain amount of chlorine into the raw water has a distinct effect on the decrease of SDI. 展开更多
关键词 silt density index Oxidation-reduction potential TURBIDITY REVERSE osmosis Membrane FOULING
下载PDF
上一页 1 2 209 下一页 到第
使用帮助 返回顶部