In natural environment, tarnish was observed on the surface of historic and contemporary gold coins in several countries. Few years after the emergence of panda gold coins, several red spots were appeared on the surfa...In natural environment, tarnish was observed on the surface of historic and contemporary gold coins in several countries. Few years after the emergence of panda gold coins, several red spots were appeared on the surface. To identify the stains and to examine the spots, optical microscope (OM), scanning electron microscope (SEM), electron microprobe analysis (EMPA), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used. It was found by microscopic observation that the stain has a dark blue central area surrounded by a large area with a nuance of colors from brown to red. Red spots usually contain holes in the center, which are distributed along the forging stress zones formed in the struck process. From the surface analyses using EMPA, sulfur and silver are detected besides gold, and the contents of Ag and S at the tarnish part are higher than those at the other part. Furthermore, distributions of Ag and S are correlated with the morphology of stains. XPS shows that components of stains are Ag2S and Ag2SO4 and the former is much predominant. These results are confirmed using XRD analysis. Accelerated tarnish test of gold in an atmosphere containing sulfur compound proves that the similar phenomenon appears when a small amount of silver is present on the surface of gold. It can be concluded that the occurrence of tarnish stains is caused by the presence of Ag and S.展开更多
文摘In natural environment, tarnish was observed on the surface of historic and contemporary gold coins in several countries. Few years after the emergence of panda gold coins, several red spots were appeared on the surface. To identify the stains and to examine the spots, optical microscope (OM), scanning electron microscope (SEM), electron microprobe analysis (EMPA), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used. It was found by microscopic observation that the stain has a dark blue central area surrounded by a large area with a nuance of colors from brown to red. Red spots usually contain holes in the center, which are distributed along the forging stress zones formed in the struck process. From the surface analyses using EMPA, sulfur and silver are detected besides gold, and the contents of Ag and S at the tarnish part are higher than those at the other part. Furthermore, distributions of Ag and S are correlated with the morphology of stains. XPS shows that components of stains are Ag2S and Ag2SO4 and the former is much predominant. These results are confirmed using XRD analysis. Accelerated tarnish test of gold in an atmosphere containing sulfur compound proves that the similar phenomenon appears when a small amount of silver is present on the surface of gold. It can be concluded that the occurrence of tarnish stains is caused by the presence of Ag and S.