Full polysaccharide crosslinked-chitosan membranes were prepared by crosslinking of chitosan with chitosan dialdehyde followed by reduction with sodium borohydride. Partially oxidized chitosan, generated from periodat...Full polysaccharide crosslinked-chitosan membranes were prepared by crosslinking of chitosan with chitosan dialdehyde followed by reduction with sodium borohydride. Partially oxidized chitosan, generated from periodate oxidation of chitosan, was used as a crosslinker. The modulus values and elongation at break were increased with increasing the crosslinker weight ratio. The rheological measurements showed that depolymerization of chitosan can take place rapidly in the presence of the oxidizing agent. The weight reduction of crosslinked-chitosan membrane after 12 h, at pH = 4 and pH = 2 was found to be 85.0% and 90.0%, respectively. The structure of the crosslinked-chitosan and the silver nanocomposite were confirmed by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Transmission electron microscopy (TEM) reveals the presence of well-separated Ag nanoparticles with diameters in the range of 4-10 nm. The silver ion loading increases with increasing the silver ion concentration, and decreasing the crosslink density. The MBC/MIC ratio of 2.0, 2.0, and 1.0 was achieved for E. coli, S. aureus, and P. aeruginosa, respectively.展开更多
The creation of an environmentally friendly synthesis method for silver nanomaterials(Ag-NPs)is an urgent concern for sustainable nanotechnology development.In the present study,a novel straightforward and green metho...The creation of an environmentally friendly synthesis method for silver nanomaterials(Ag-NPs)is an urgent concern for sustainable nanotechnology development.In the present study,a novel straightforward and green method for the preparation of silver nanoparti-cle/reduced graphene oxide(AgNP/rGO)composites was successfully developed through the combination of phytosynthesis,continuous flow synthesis and microwave-assistance.Oriental persimmon(Diospyros kaki Thunb.)extracts were used as both plant reducing and capping agents for fast online synthesis of AgNP/rGO composites.The experimental param-eters were optimized and the morphologies of the prepared materials were investigated.The characterization results reveal that spherical AgNPs were quickly synthesized and uni-formly dispersed on rGO sheets using the proposed online system.Fourier transform in-frared spectroscopy analysis confirmed that phenols,flavonoids,and other substances in the plant extracts played a decisive role in the synthesis of AgNP/rGO composites.Using sodium borohydride(NaBH4)degradation of p-nitrophenol(4-NP)as a model,the catalytic activity of the prepared AgNP/rGO materials was evaluated.The complete degradation of 4-NP was achieved within 12 min through the use of AgNP/rGO materials,and the compos-ite had a much better catalytic activity than the bare AgNPs and rGO had.Compared with the conventional chemical method,our online method is facile,fast,cost-efficient,and en-vironmentally friendly.展开更多
基金financially supported by the Iran National Science Foundation(INFS)(No.91001106)
文摘Full polysaccharide crosslinked-chitosan membranes were prepared by crosslinking of chitosan with chitosan dialdehyde followed by reduction with sodium borohydride. Partially oxidized chitosan, generated from periodate oxidation of chitosan, was used as a crosslinker. The modulus values and elongation at break were increased with increasing the crosslinker weight ratio. The rheological measurements showed that depolymerization of chitosan can take place rapidly in the presence of the oxidizing agent. The weight reduction of crosslinked-chitosan membrane after 12 h, at pH = 4 and pH = 2 was found to be 85.0% and 90.0%, respectively. The structure of the crosslinked-chitosan and the silver nanocomposite were confirmed by FTIR spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Transmission electron microscopy (TEM) reveals the presence of well-separated Ag nanoparticles with diameters in the range of 4-10 nm. The silver ion loading increases with increasing the silver ion concentration, and decreasing the crosslink density. The MBC/MIC ratio of 2.0, 2.0, and 1.0 was achieved for E. coli, S. aureus, and P. aeruginosa, respectively.
基金This study was supported by the National Natural Science Foundation of China(Nos.21620102008,and 21777040)the Beijing Natural Science Foundation(No.8182051)the Fundamental Research Funds for the Central Universities(No.2017ZZD07).
文摘The creation of an environmentally friendly synthesis method for silver nanomaterials(Ag-NPs)is an urgent concern for sustainable nanotechnology development.In the present study,a novel straightforward and green method for the preparation of silver nanoparti-cle/reduced graphene oxide(AgNP/rGO)composites was successfully developed through the combination of phytosynthesis,continuous flow synthesis and microwave-assistance.Oriental persimmon(Diospyros kaki Thunb.)extracts were used as both plant reducing and capping agents for fast online synthesis of AgNP/rGO composites.The experimental param-eters were optimized and the morphologies of the prepared materials were investigated.The characterization results reveal that spherical AgNPs were quickly synthesized and uni-formly dispersed on rGO sheets using the proposed online system.Fourier transform in-frared spectroscopy analysis confirmed that phenols,flavonoids,and other substances in the plant extracts played a decisive role in the synthesis of AgNP/rGO composites.Using sodium borohydride(NaBH4)degradation of p-nitrophenol(4-NP)as a model,the catalytic activity of the prepared AgNP/rGO materials was evaluated.The complete degradation of 4-NP was achieved within 12 min through the use of AgNP/rGO materials,and the compos-ite had a much better catalytic activity than the bare AgNPs and rGO had.Compared with the conventional chemical method,our online method is facile,fast,cost-efficient,and en-vironmentally friendly.