Machine learning has been widely applied in well logging formation evaluation studies.However,several challenges negatively impacted the generalization capabilities of machine learning models in practical imple-mentat...Machine learning has been widely applied in well logging formation evaluation studies.However,several challenges negatively impacted the generalization capabilities of machine learning models in practical imple-mentations,such as the mismatch of data domain between training and testing datasets,imbalances among sample categories,and inadequate representation of data model.These issues have led to substantial insufficient identification for reservoir and significant deviations in subsequent evaluations.To improve the transferability of machine learning models within limited sample sets,this study proposes a weight transfer learning framework based on the similarity of the labels.The similarity weighting method includes both hard weights and soft weights.By evaluating the similarity between test and training sets of logging data,the similarity results are used to estimate the weights of training samples,thereby optimizing the model learning process.We develop a double experts’network and a bidirectional gated neural network based on hierarchical attention and multi-head attention(BiGRU-MHSA)for well logs reconstruction and lithofacies classification tasks.Oil field data results for the shale strata in the Gulong area of the Songliao Basin of China indicate that the double experts’network model performs well in curve reconstruction tasks.However,it may not be effective in lithofacies classification tasks,while BiGRU-MHSA performs well in that area.In the study of constructing large-scale well logging processing and formation interpretation models,it is maybe more beneficial by employing different expert models for combined evaluations.In addition,although the improvement is limited,hard or soft weighting methods is better than unweighted(i.e.,average-weighted)in significantly different adjacent wells.The code and data are open and available for subsequent studies on other lithofacies layers.展开更多
Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique f...Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique for dimensionality reduction to search an optimal feature subset preserving the most relevant information. In this paper, we propose an effective feature evaluation criterion for multi-label feature selection, called neighborhood relationship preserving score. This criterion is inspired by similarity preservation, which is widely used in single-label feature selection. It evaluates each feature subset by measuring its capability in preserving neighborhood relationship among samples. Unlike similarity preservation, we address the order of sample similarities which can well express the neighborhood relationship among samples, not just the pairwise sample similarity. With this criterion, we also design one ranking algorithm and one greedy algorithm for feature selection problem. The proposed algorithms are validated in six publicly available data sets from machine learning repository. Experimental results demonstrate their superiorities over the compared state-of-the-art methods.展开更多
Video reconstruction quality largely depends on the ability of employed sparse domain to adequately represent the underlying video in Distributed Compressed Video Sensing (DCVS). In this paper, we propose a novel dyna...Video reconstruction quality largely depends on the ability of employed sparse domain to adequately represent the underlying video in Distributed Compressed Video Sensing (DCVS). In this paper, we propose a novel dynamic global-Principal Component Analysis (PCA) sparse representation algorithm for video based on the sparse-land model and nonlocal similarity. First, grouping by matching is realized at the decoder from key frames that are previously recovered. Second, we apply PCA to each group (sub-dataset) to compute the principle components from which the sub-dictionary is constructed. Finally, the non-key frames are reconstructed from random measurement data using a Compressed Sensing (CS) reconstruction algorithm with sparse regularization. Experimental results show that our algorithm has a better performance compared with the DCT and K-SVD dictionaries.展开更多
基金supported by the Strategic Cooperation Technology Projects of China National Petroleum Corporation (CNPC)and China University of Petroleum (Beijing) (CUPB) (ZLZX2020-03)National Key Research and Development Program,China (2019YFA0708301)+1 种基金National Key Research and Development Program,China (2023YFF0714102)Science and Technology Innovation Fund of China National Petroleum Corporation (CNPC) (2021DQ02-0403).
文摘Machine learning has been widely applied in well logging formation evaluation studies.However,several challenges negatively impacted the generalization capabilities of machine learning models in practical imple-mentations,such as the mismatch of data domain between training and testing datasets,imbalances among sample categories,and inadequate representation of data model.These issues have led to substantial insufficient identification for reservoir and significant deviations in subsequent evaluations.To improve the transferability of machine learning models within limited sample sets,this study proposes a weight transfer learning framework based on the similarity of the labels.The similarity weighting method includes both hard weights and soft weights.By evaluating the similarity between test and training sets of logging data,the similarity results are used to estimate the weights of training samples,thereby optimizing the model learning process.We develop a double experts’network and a bidirectional gated neural network based on hierarchical attention and multi-head attention(BiGRU-MHSA)for well logs reconstruction and lithofacies classification tasks.Oil field data results for the shale strata in the Gulong area of the Songliao Basin of China indicate that the double experts’network model performs well in curve reconstruction tasks.However,it may not be effective in lithofacies classification tasks,while BiGRU-MHSA performs well in that area.In the study of constructing large-scale well logging processing and formation interpretation models,it is maybe more beneficial by employing different expert models for combined evaluations.In addition,although the improvement is limited,hard or soft weighting methods is better than unweighted(i.e.,average-weighted)in significantly different adjacent wells.The code and data are open and available for subsequent studies on other lithofacies layers.
基金supported in part by the National Natural Science Foundation of China(61379049,61772120)
文摘Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique for dimensionality reduction to search an optimal feature subset preserving the most relevant information. In this paper, we propose an effective feature evaluation criterion for multi-label feature selection, called neighborhood relationship preserving score. This criterion is inspired by similarity preservation, which is widely used in single-label feature selection. It evaluates each feature subset by measuring its capability in preserving neighborhood relationship among samples. Unlike similarity preservation, we address the order of sample similarities which can well express the neighborhood relationship among samples, not just the pairwise sample similarity. With this criterion, we also design one ranking algorithm and one greedy algorithm for feature selection problem. The proposed algorithms are validated in six publicly available data sets from machine learning repository. Experimental results demonstrate their superiorities over the compared state-of-the-art methods.
基金supported by the Innovation Project of Graduate Students of Jiangsu Province, China under Grants No. CXZZ12_0466, No. CXZZ11_0390the National Natural Science Foundation of China under Grants No. 61071091, No. 61271240, No. 61201160, No. 61172118+2 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China under Grant No. 12KJB510019the Science and Technology Research Program of Hubei Provincial Department of Education under Grants No. D20121408, No. D20121402the Program for Research Innovation of Nanjing Institute of Technology Project under Grant No. CKJ20110006
文摘Video reconstruction quality largely depends on the ability of employed sparse domain to adequately represent the underlying video in Distributed Compressed Video Sensing (DCVS). In this paper, we propose a novel dynamic global-Principal Component Analysis (PCA) sparse representation algorithm for video based on the sparse-land model and nonlocal similarity. First, grouping by matching is realized at the decoder from key frames that are previously recovered. Second, we apply PCA to each group (sub-dataset) to compute the principle components from which the sub-dictionary is constructed. Finally, the non-key frames are reconstructed from random measurement data using a Compressed Sensing (CS) reconstruction algorithm with sparse regularization. Experimental results show that our algorithm has a better performance compared with the DCT and K-SVD dictionaries.