During the new product development process, reusing the existing CAD models could avoid designing from scratch and decrease human cost. With the advent of big data,how to rapidly and efficiently find out suitable 3D C...During the new product development process, reusing the existing CAD models could avoid designing from scratch and decrease human cost. With the advent of big data,how to rapidly and efficiently find out suitable 3D CAD models for design reuse is taken more attention. Currently the sketch-based retrieval approach makes search more convenient, but its accuracy is not high enough; on the other hand, the semantic-based retrieval approach fully utilizes high level semantic information, and makes search much closer to engineers' intent.However, effectively extracting and representing semantic information from data sets is difficult.Aiming at these problems, we proposed a sketch-based semantic retrieval approach for reusing3 D CAD models. Firstly a fine granularity semantic descriptor is designed for representing 3D CAD models; Secondly, several heuristic rules are adopted to recognize 3D features from 2D sketch, and the correspondences between 3D feature and 2D loops are built; Finally, semantic and shape similarity measurements are combined together to match the input sketch to 3D CAD models. Hence the retrieval accuracy is improved. A sketch-based prototype system is developed.Experimental results validate the feasibility and effectiveness of our proposed approach.展开更多
Numerical characterizations of DNA sequence can facilitate analysis of similar sequences. To visualize and compare different DNA sequences in less space, a novel descriptors extraction approach was proposed for numeri...Numerical characterizations of DNA sequence can facilitate analysis of similar sequences. To visualize and compare different DNA sequences in less space, a novel descriptors extraction approach was proposed for numerical characterizations and similarity analysis of sequences. Initially, a transformation method was introduced to represent each DNA sequence with dinucleotide physicochemical property matrix. Then, based on the approximate joint diagonalization theory, an eigenvalue vector was extracted from each DNA sequence,which could be considered as descriptor of the DNA sequence. Moreover, similarity analyses were performed by calculating the pair-wise distances among the obtained eigenvalue vectors. The results show that the proposed approach can capture more sequence information, and can jointly analyze the information contained in all involved multiple sequences, rather than separately, whose effectiveness was demonstrated intuitively by constructing a dendrogram for the 15 beta-globin gene sequences.展开更多
基金Supported by the National Natural Science Foundation of China(61502129,61572432,61163016)the Zhejiang Natural Science Foundation of China(LQ16F020004,LQ15F020011)the University Scientific Research Projects of Ningxia Province of China(NGY2015161)
文摘During the new product development process, reusing the existing CAD models could avoid designing from scratch and decrease human cost. With the advent of big data,how to rapidly and efficiently find out suitable 3D CAD models for design reuse is taken more attention. Currently the sketch-based retrieval approach makes search more convenient, but its accuracy is not high enough; on the other hand, the semantic-based retrieval approach fully utilizes high level semantic information, and makes search much closer to engineers' intent.However, effectively extracting and representing semantic information from data sets is difficult.Aiming at these problems, we proposed a sketch-based semantic retrieval approach for reusing3 D CAD models. Firstly a fine granularity semantic descriptor is designed for representing 3D CAD models; Secondly, several heuristic rules are adopted to recognize 3D features from 2D sketch, and the correspondences between 3D feature and 2D loops are built; Finally, semantic and shape similarity measurements are combined together to match the input sketch to 3D CAD models. Hence the retrieval accuracy is improved. A sketch-based prototype system is developed.Experimental results validate the feasibility and effectiveness of our proposed approach.
基金supported by the Key Project from Education Department of Anhui Province (No.KJ2013A076)the PhD Programs Foundation of Ministry of Education of China (No.20120072110040)+1 种基金the National Natural Science Foundation of China (Nos.61133010,31071168,and 61005010)the China Postdoctoral Science Foundation (No.2012T50582)
文摘Numerical characterizations of DNA sequence can facilitate analysis of similar sequences. To visualize and compare different DNA sequences in less space, a novel descriptors extraction approach was proposed for numerical characterizations and similarity analysis of sequences. Initially, a transformation method was introduced to represent each DNA sequence with dinucleotide physicochemical property matrix. Then, based on the approximate joint diagonalization theory, an eigenvalue vector was extracted from each DNA sequence,which could be considered as descriptor of the DNA sequence. Moreover, similarity analyses were performed by calculating the pair-wise distances among the obtained eigenvalue vectors. The results show that the proposed approach can capture more sequence information, and can jointly analyze the information contained in all involved multiple sequences, rather than separately, whose effectiveness was demonstrated intuitively by constructing a dendrogram for the 15 beta-globin gene sequences.