The open and dynamic environment of Internet computing demands new software reliability technologies.How to efficiently and effectively build highly reliable Internet applications becomes a critical research problem.T...The open and dynamic environment of Internet computing demands new software reliability technologies.How to efficiently and effectively build highly reliable Internet applications becomes a critical research problem.This paper proposes a research framework for predicting reliability of individual software entities as well as the whole Internet application.Characteristics of the Internet environment are comprehensively analyzed and several reliability prediction approaches are proposed.A prototype is implemented and practical use of the proposed framework is also demonstrated.展开更多
On the basis of the ideal of local scale similarity theory, the profile equations of wind, temperature and humidity for the eonvective marine boundary layer have been obtained. The marine boundary layer measurements w...On the basis of the ideal of local scale similarity theory, the profile equations of wind, temperature and humidity for the eonvective marine boundary layer have been obtained. The marine boundary layer measurements were made over the western Pacific Ocean as past of the Tropical Ocean and Global Atmosphere (TOGA) Programme during Nov. 1986-Feb. 1987. The similarity profiles predicledfor wind. temperature and humidity in the MBL are in good agreement with the observational data.展开更多
To aim at higher coding efficiency for multiview video coding, the multiview video with a modified high efficiency video coding(MV-HEVC)codec is proposed to encode the dependent views.However, the computational comp...To aim at higher coding efficiency for multiview video coding, the multiview video with a modified high efficiency video coding(MV-HEVC)codec is proposed to encode the dependent views.However, the computational complexity of MV-HEVC encoder is also increased significantly since MV-HEVC inherits all computational complexity of HEVC. This paper presents an efficient algorithm for reducing the high computational complexity of MV-HEVC by fast deciding the coding unit during the encoding process. In our proposal, the depth information of the largest coding units(LCUs) from independent view and neighboring LCUs is analyzed first. Afterwards, the analyzed results are used to early determine the depth for dependent view and thus achieve computational complexity reduction. Furthermore, a prediction unit(PU) decision strategy is also proposed to maintain the video quality. Experimental results demonstrate that our algorithm can achieve 57% time saving on average,while maintaining good video quality and bit-rate performance compared with HTM8.0.展开更多
With the development of the social media and Internet, discovering latent information from massive information is becoming particularly relevant to improving user experience. Research efforts based on preferences and ...With the development of the social media and Internet, discovering latent information from massive information is becoming particularly relevant to improving user experience. Research efforts based on preferences and relationships between users have attracted more and more attention. Predictive problems, such as inferring friend relationship and co-author relationship between users have been explored. However, many such methods are based on analyzing either node features or the network structures separately, few have tried to tackle both of them at the same time. In this paper, in order to discover latent co-interests' relationship, we not only consider users' attributes but network information as well. In addition, we propose an Interest-based Factor Graph Model (I-FGM) to incorporate these factors. Experiments on two data sets (bookmarking and music network) demonstrate that this predictive method can achieve better results than the other three methods (ANN, NB, and SVM).展开更多
Information networks that can be extracted from many domains are widely studied recently. Different functions for mining these networks are proposed and developed, such as ranking, community detection, and link predic...Information networks that can be extracted from many domains are widely studied recently. Different functions for mining these networks are proposed and developed, such as ranking, community detection, and link prediction. Most existing network studies are on homogeneous networks, where nodes and links are assumed from one single type. In reality, however, heterogeneous information networks can better model the real-world systems, which are typically semi-structured and typed, following a network schema. In order to mine these heterogeneous information networks directly, we propose to explore the meta structure of the information network, i.e., the network schema. The concepts of meta-paths are proposed to systematically capture numerous semantic relationships across multiple types of objects, which are defined as a path over the graph of network schema. Meta-paths can provide guidance for search and mining of the network and help analyze and understand the semantic meaning of the objects and relations in the network. Under this framework, similarity search and other mining tasks such as relationship prediction and clustering can be addressed by systematic exploration of the network meta structure. Moreover, with user's guidance or feedback, we can select the best meta-path or their weighted combination for a specific mining task.展开更多
基金supported by the National Natural Science Foundation of China(Project No.61472338,61332010)Guangdong Natural Science Foundation(Project No. 2014A030313151)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Grants Council of the Hong Kong Special Administrative Region,China (No.415113)
文摘The open and dynamic environment of Internet computing demands new software reliability technologies.How to efficiently and effectively build highly reliable Internet applications becomes a critical research problem.This paper proposes a research framework for predicting reliability of individual software entities as well as the whole Internet application.Characteristics of the Internet environment are comprehensively analyzed and several reliability prediction approaches are proposed.A prototype is implemented and practical use of the proposed framework is also demonstrated.
文摘On the basis of the ideal of local scale similarity theory, the profile equations of wind, temperature and humidity for the eonvective marine boundary layer have been obtained. The marine boundary layer measurements were made over the western Pacific Ocean as past of the Tropical Ocean and Global Atmosphere (TOGA) Programme during Nov. 1986-Feb. 1987. The similarity profiles predicledfor wind. temperature and humidity in the MBL are in good agreement with the observational data.
基金supported by NSC under Grant No.NSC 100-2628-E-259-002-MY3
文摘To aim at higher coding efficiency for multiview video coding, the multiview video with a modified high efficiency video coding(MV-HEVC)codec is proposed to encode the dependent views.However, the computational complexity of MV-HEVC encoder is also increased significantly since MV-HEVC inherits all computational complexity of HEVC. This paper presents an efficient algorithm for reducing the high computational complexity of MV-HEVC by fast deciding the coding unit during the encoding process. In our proposal, the depth information of the largest coding units(LCUs) from independent view and neighboring LCUs is analyzed first. Afterwards, the analyzed results are used to early determine the depth for dependent view and thus achieve computational complexity reduction. Furthermore, a prediction unit(PU) decision strategy is also proposed to maintain the video quality. Experimental results demonstrate that our algorithm can achieve 57% time saving on average,while maintaining good video quality and bit-rate performance compared with HTM8.0.
基金the National Natural Science Foundation of China (No. 61170192)the Natural Science Foundations of Municipality of Chongqing(No. CSTC2012JJB40012)
文摘With the development of the social media and Internet, discovering latent information from massive information is becoming particularly relevant to improving user experience. Research efforts based on preferences and relationships between users have attracted more and more attention. Predictive problems, such as inferring friend relationship and co-author relationship between users have been explored. However, many such methods are based on analyzing either node features or the network structures separately, few have tried to tackle both of them at the same time. In this paper, in order to discover latent co-interests' relationship, we not only consider users' attributes but network information as well. In addition, we propose an Interest-based Factor Graph Model (I-FGM) to incorporate these factors. Experiments on two data sets (bookmarking and music network) demonstrate that this predictive method can achieve better results than the other three methods (ANN, NB, and SVM).
基金supported in part by the U.S.Army Research Laboratory under Cooperative Agreement No.W911NF-09-2-0053(NS-CTA),NSF ⅡS-0905215,CNS-09-31975MIAS,a DHS-IDS Center for Multimodal Information Access and Synthesis at UIUC
文摘Information networks that can be extracted from many domains are widely studied recently. Different functions for mining these networks are proposed and developed, such as ranking, community detection, and link prediction. Most existing network studies are on homogeneous networks, where nodes and links are assumed from one single type. In reality, however, heterogeneous information networks can better model the real-world systems, which are typically semi-structured and typed, following a network schema. In order to mine these heterogeneous information networks directly, we propose to explore the meta structure of the information network, i.e., the network schema. The concepts of meta-paths are proposed to systematically capture numerous semantic relationships across multiple types of objects, which are defined as a path over the graph of network schema. Meta-paths can provide guidance for search and mining of the network and help analyze and understand the semantic meaning of the objects and relations in the network. Under this framework, similarity search and other mining tasks such as relationship prediction and clustering can be addressed by systematic exploration of the network meta structure. Moreover, with user's guidance or feedback, we can select the best meta-path or their weighted combination for a specific mining task.