In consideration of the limitation of super-peer overlay network, the semantic information was introduced into the super-peers' organization. A novel P2P (peer-to-peer) searching model, SSP2P, was put forward. The ...In consideration of the limitation of super-peer overlay network, the semantic information was introduced into the super-peers' organization. A novel P2P (peer-to-peer) searching model, SSP2P, was put forward. The peers in the model were organized in a natural area autonomy system (AAS) based on the smallworld theory. A super-peer was selected in each AAS based on power law; and all the super-peers formed different super-peer semantic networks. Thus, a hierarchical super-peer overlay network was formed. The results show that the model reduces the communication cost and enhances the search efficiency while ensuring the system expansibility. It proves that the introduction of semantic information in the construction of a super-peer overlay is favorable to P2P system capability.展开更多
Distributed data sources which employ taxonomy hierarchy to describe the contents of their objects are considered, and a super-peer-based semantic overlay network (SSON) is proposed for sharing and searching their d...Distributed data sources which employ taxonomy hierarchy to describe the contents of their objects are considered, and a super-peer-based semantic overlay network (SSON) is proposed for sharing and searching their data objects. In SSON, peers are dynamically clustered into many semantic clusters based on the semantics of their data objects and organized in the semantic clusters into a semantic overlay network. Each semantic cluster consists of a super-peer and more peers, and is only responsible for answering queries in its semantic subspace. A query is first routed to the appropriate semantic clusters by an efficient searching algorithm, and then it is forwarded to the specific peers that hold the relevant data objects. Experimental results indicate that SSON has good scalability and achieves a competitive trade-off between search efficiency and costs.展开更多
A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.I...A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.It allows the reconstructed shape to vary more than that reconstructed in the standard ASM shape space,hence it is more expressive in representing shapes in real life.Then a cost function is developed,based on a study on the search process.An optimal searching method using the feedback information provided by the evaluation cost is proposed to improve the performance of ASM alignment.Experimental results show that the proposed OSS can offer the maximum shape variation with reserving the principal information and a unique local optimal shape is acquired after optimal searching.The combination of OSS and optimal searching can improve the ASM performance greatly.展开更多
For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversio...For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversion parameters and subdivision scheme can, not only improve the inversion process efficiency, but also ensure inversion result accuracy. The gravity inversion method based on correlation searching and the golden section algorithm is an effective potential field inversion method. It can be used to invert 2D and 3D physical properties with potential data observed on flat or rough surfaces. In this paper, we introduce in detail the density inversion principles based on correlation searching and the golden section algorithm. Considering that the gold section algorithm is not globally optimized. we present a heuristic method to ensure the inversion result is globally optimized. With a series of model tests, we systematically compare and analyze the inversion result efficiency and accuracy with different parameters. Based on the model test results, we conclude the selection principles for each inversion parameter with which the inversion accuracy can be obviously improved.展开更多
A new contact searching algorithm for contact-impact systems is proposed in this paper.In terms of the cell structure and the linked-list,this algo- rithm solves the problem of sorting and searching contacts in three ...A new contact searching algorithm for contact-impact systems is proposed in this paper.In terms of the cell structure and the linked-list,this algo- rithm solves the problem of sorting and searching contacts in three dimensions by transforming it to a retrieving process from two one-dimensional arrays,and binary searching is no longer required.Using this algorithm, the cost of contact searching is reduced to the order of O(N)instead of O(Nlog_2N)for traditional ones,where N is the node number in the system.Moreover,this algorithm can handle contact systems with arbitrary mesh layouts.Due to the simplicity of this algorithm it can be easily implemented in a dynamic explicit finite element program.Our numerical experi- mental result shows that this algorithm is reliable arid efficient for contact searching of three dimensional systems.展开更多
Existing methods of local search mostly focus on how to reach optimal solution.However,in some emergency situations,search time is the hard constraint for job shop scheduling problem while optimal solution is not nece...Existing methods of local search mostly focus on how to reach optimal solution.However,in some emergency situations,search time is the hard constraint for job shop scheduling problem while optimal solution is not necessary.In this situation,the existing method of local search is not fast enough.This paper presents an emergency local search(ELS) approach which can reach feasible and nearly optimal solution in limited search time.The ELS approach is desirable for the aforementioned emergency situations where search time is limited and a nearly optimal solution is sufficient,which consists of three phases.Firstly,in order to reach a feasible and nearly optimal solution,infeasible solutions are repaired and a repair technique named group repair is proposed.Secondly,in order to save time,the amount of local search moves need to be reduced and this is achieved by a quickly search method named critical path search(CPS).Finally,CPS sometimes stops at a solution far from the optimal one.In order to jump out the search dilemma of CPS,a jump technique based on critical part is used to improve CPS.Furthermore,the schedule system based on ELS has been developed and experiments based on this system completed on the computer of Intel Pentium(R) 2.93 GHz.The experimental result shows that the optimal solutions of small scale instances are reached in 2 s,and the nearly optimal solutions of large scale instances are reached in 4 s.The proposed ELS approach can stably reach nearly optimal solutions with manageable search time,and can be applied on some emergency situations.展开更多
We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which ...We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which the Z coarse approach relies on a high simplic-ity friction-type walker (of our own invention) driven by an axially cut piezoelectric tube. The walker is vertically inserted in a piezoelectric scanner tube (PST) with its brim laying at on the PST end as the inertial slider (driven by the PST) for the XZ (sample plane) motion. The STM is designed to be capable of searching rare microscopic targets (defects, dopants, boundaries, nano-devices, etc.) in a macroscopic sample area (square millimeters) under extreme conditions (low temperatures, strong magnetic elds, etc.) in which it ts. It gives good atomic resolution images after scanning a highly oriented pyrolytic graphite sample in air at room temperature.展开更多
A hybrid carrier(HC) scheme based on weighted-type fractional Fourier transform(WFRFT) has been proposed recently.While most of the works focus on HC scheme's inherent characteristics, little attention is paid to...A hybrid carrier(HC) scheme based on weighted-type fractional Fourier transform(WFRFT) has been proposed recently.While most of the works focus on HC scheme's inherent characteristics, little attention is paid to the WFRFT modulation recognition.In this paper, a new theory is provided to recognize the WFRFT modulation based on higher order cumulants(HOC). First, it is deduced that the optimal WFRFT received order can be obtained through the minimization of 4 th-order cumulants, C_(42). Then, a combinatorial searching algorithm is designed to minimize C_(42).Finally, simulation results show that the designed scheme has a high recognition rate and the combinatorial searching algorithm is effective and reliable.展开更多
Artificial Searching Swarm Algorithm (ASSA) is a new optimization algorithm. ASSA simulates the soldiers to search an enemy’s important goal, and transforms the process of solving optimization problem into the proces...Artificial Searching Swarm Algorithm (ASSA) is a new optimization algorithm. ASSA simulates the soldiers to search an enemy’s important goal, and transforms the process of solving optimization problem into the process of searching optimal goal by searching swarm with set rules. This work selects complicated and highn dimension functions to deeply analyse the performance for unconstrained and constrained optimization problems and the results produced by ASSA, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Fish-Swarm Algorithm (AFSA) have been compared. The main factors which influence the performance of ASSA are also discussed. The results demonstrate the effectiveness of the proposed ASSA optimization algorithm.展开更多
Two deficiencies in traditional iterative closest pointsimultaneous localization and mapping( ICP-SLAM) usually result in poor real-time performance. On one hand, relative position between current scan frame and globa...Two deficiencies in traditional iterative closest pointsimultaneous localization and mapping( ICP-SLAM) usually result in poor real-time performance. On one hand, relative position between current scan frame and global map cannot be previously known. As a result, ICP algorithm will take much amount of iterations to reach convergence. On the other hand,establishment of correspondence is done by global searching, which requires enormous computational time. To overcome the two problems,a fast ICP-SLAM with rough alignment and narrowing-scale nearby searching is proposed. As for the decrease of iterative times,rough alignment based on initial pose matrix is proposed. In detail,initial pose matrix is obtained by micro-electro-mechanical system( MEMS) magnetometer and global landmarks. Then rough alignment will be applied between current scan frame and global map at the beginning of ICP algorithm with initial pose matrix. As for accelerating the establishment of correspondence, narrowingscale nearby searching with dynamic threshold is proposed,where match-points are found within a progressively constrictive range.Compared to traditional ICP-SLAM,the experimental results show that the amount of iteration for ICP algorithm to reach convergence reduces to 92. 34% and ICP algorithm runtime reduces to 98. 86% on average. In addition,computational cost is kept in a stable level due to the eliminating of the accumulation of computational consumption. Moreover,great improvement can also been achieved in SLAM quality and robustness.展开更多
The current Grover quantum searching algorithm cannot identify the difference in importance of the search targets when it is applied to an unsorted quantum database, and the probability for each search target is equal...The current Grover quantum searching algorithm cannot identify the difference in importance of the search targets when it is applied to an unsorted quantum database, and the probability for each search target is equal. To solve this problem, a Grover searching algorithm based on weighted targets is proposed. First, each target is endowed a weight coefficient according to its importance. Applying these different weight coefficients, the targets are represented as quantum superposition states. Second, the novel Grover searching algorithm based on the quantum superposition of the weighted targets is constructed. Using this algorithm, the probability of getting each target can be approximated to the corresponding weight coefficient, which shows the flexibility of this algorithm. Finally, the validity of the algorithm is proved by a simple searching example.展开更多
A quantum image searching method is proposed based on the probability distributions of the readouts from the quantum measurements. It is achieved by using low computational resources which are only a single Hadamard g...A quantum image searching method is proposed based on the probability distributions of the readouts from the quantum measurements. It is achieved by using low computational resources which are only a single Hadamard gate combined with m + 1 quantum measurement operations. To validate the proposed method, a simulation experiment is used where the image with the highest similarity value of 0.93 to the particular test image is retrieved as the search result from 4 × 4 binary image database. The proposal provides a basic step for designing a search engine on quantum computing devices where the image in the database is retrieved based on its similarity to the test image.展开更多
To evaluate the credit risk of customers in power market precisely, the new chaotic searching and fuzzy neural network (FNN) hybrid algorithm were proposed. By combining with the chaotic searching, the learning abilit...To evaluate the credit risk of customers in power market precisely, the new chaotic searching and fuzzy neural network (FNN) hybrid algorithm were proposed. By combining with the chaotic searching, the learning ability of the FNN was markedly enhanced. Customers’ actual credit flaw data of power supply enterprises were collected to carry on the real evaluation, which can be treated as example for the model. The result shows that the proposed method surpasses the traditional statistical models in regard to the precision of forecasting and has a practical value. Compared with the results of ordinary FNN and ANN, the precision of the proposed algorithm can be enhanced by 2.2% and 4.5%, respectively.展开更多
In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated wit...In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated with traditional routing protocols in MANETs, such as poor anti-fading performance and slow convergence rate, for basic Dynamic Source Routing (DSR), we propose a new routing model based on Grover's searching algorithm. With this new routing model, each node maintains a node vector function, and all the nodes can obtain a node probability vector using Grover's algorithm, and then select an optimal routing according to node probability. Simulation results show that compared with DSR, this new routing protocol can effectively extend the network lifetime, as well as reduce the network delay and the number of routing hops. It can also significantly improve the anti-jamming capability of the network.展开更多
Shenvi et al.have proposed a quantum algorithm based on quantum walking called Shenvi-Kempe-Whaley(SKW)algorithm,but this search algorithm can only search one target state and use a specific search target state vector...Shenvi et al.have proposed a quantum algorithm based on quantum walking called Shenvi-Kempe-Whaley(SKW)algorithm,but this search algorithm can only search one target state and use a specific search target state vector.Therefore,when there are more than two target nodes in the search space,the algorithm has certain limitations.Even though a multiobjective SKW search algorithm was proposed later,when the number of target nodes is more than two,the SKW search algorithm cannot be mapped to the same quotient graph.In addition,the calculation of the optimal target state depends on the number of target states m.In previous studies,quantum computing and testing algorithms were used to solve this problem.But these solutions require more Oracle calls and cannot get a high accuracy rate.Therefore,to solve the above problems,we improve the multi-target quantum walk search algorithm,and construct a controllable quantum walk search algorithm under the condition of unknown number of target states.By dividing the Hilbert space into multiple subspaces,the accuracy of the search algorithm is improved from p_(c)=(1/2)-O(1/n)to p_(c)=1-O(1/n).And by adding detection gate phase,the algorithm can stop when the amplitude of the target state becomes the maximum for the first time,and the algorithm can always maintain the optimal number of iterations,so as to reduce the number of unnecessary iterations in the algorithm process and make the number of iterations reach t_(f)=(π/2)(?).展开更多
In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propag...In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).展开更多
Considering the characteristics of spatial straightness error, this paper puts forward a kind of evaluation method of spatial straightness error using Geometric Approximation Searching Algorithm (GASA). According to t...Considering the characteristics of spatial straightness error, this paper puts forward a kind of evaluation method of spatial straightness error using Geometric Approximation Searching Algorithm (GASA). According to the minimum condition principle of form error evaluation, the mathematic model and optimization objective of the GASA are given. The algorithm avoids the optimization and linearization, and can be fulfilled in three steps. First construct two parallel quadrates based on the preset two reference points of the spatial line respectively;second construct centerlines by connecting one quadrate each vertices to another quadrate each vertices;after that, calculate the distances between measured points and the constructed centerlines. The minimum zone straightness error is obtained by repeating comparing and reconstructing quadrates. The principle and steps of the algorithm to evaluate spatial straightness error is described in detail, and the mathematical formula and program flowchart are given also. Results show that this algorithm can evaluate spatial straightness error more effectively and exactly.展开更多
To overcome imperfection of exhaustive based beam searching scheme in IEEE 802.15.3c and IEEE 802.11 ad and accelerate the beam training process, combined with the fast beam searching algorithm previously proposed, th...To overcome imperfection of exhaustive based beam searching scheme in IEEE 802.15.3c and IEEE 802.11 ad and accelerate the beam training process, combined with the fast beam searching algorithm previously proposed, this paper proposed a beam codebook design scheme for phased array to not only satisfy the fast beam searching algorithm's demand, but also make good use of the advantage of the searching algorithm. The simulation results prove that the proposed scheme not only performs well on flexibility and searching time complexity, but also has high success ratio.展开更多
Suppose that a moving target moves randomly between two sites and its movement is modeled by a homogeneous Markov chain. We consider three classical problems: (1) what kind of strategies are valid? (2) what stra...Suppose that a moving target moves randomly between two sites and its movement is modeled by a homogeneous Markov chain. We consider three classical problems: (1) what kind of strategies are valid? (2) what strategy is the optimal? (3) what is the infimum of expected numbers of looks needed to detect the target? Problem (3) is thoroughly solved, and some partial solutions to problems (1) and (2) are achieved.展开更多
Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes...Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index(GII) and bond strain index(BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII & BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.展开更多
基金The National Natural Science Foundation of China(No.60573127), Specialized Research Fund for the Doctoral Program of Higher Education (No.20040533036).
文摘In consideration of the limitation of super-peer overlay network, the semantic information was introduced into the super-peers' organization. A novel P2P (peer-to-peer) searching model, SSP2P, was put forward. The peers in the model were organized in a natural area autonomy system (AAS) based on the smallworld theory. A super-peer was selected in each AAS based on power law; and all the super-peers formed different super-peer semantic networks. Thus, a hierarchical super-peer overlay network was formed. The results show that the model reduces the communication cost and enhances the search efficiency while ensuring the system expansibility. It proves that the introduction of semantic information in the construction of a super-peer overlay is favorable to P2P system capability.
基金The National Natural Science Foundation of China(No60573089)the Natural Science Foundation of Liaoning Province(No20052031)the National High Technology Research and Develop-ment Program of China (863Program)(No2006AA09Z139)
文摘Distributed data sources which employ taxonomy hierarchy to describe the contents of their objects are considered, and a super-peer-based semantic overlay network (SSON) is proposed for sharing and searching their data objects. In SSON, peers are dynamically clustered into many semantic clusters based on the semantics of their data objects and organized in the semantic clusters into a semantic overlay network. Each semantic cluster consists of a super-peer and more peers, and is only responsible for answering queries in its semantic subspace. A query is first routed to the appropriate semantic clusters by an efficient searching algorithm, and then it is forwarded to the specific peers that hold the relevant data objects. Experimental results indicate that SSON has good scalability and achieves a competitive trade-off between search efficiency and costs.
基金21st Century Education Revitalization Project (No.301703201).
文摘A novel idea,called the optimal shape subspace (OSS) is first proposed for optimizing active shape model (ASM) search.It is constructed from the principal shape subspace and the principal shape variance subspace.It allows the reconstructed shape to vary more than that reconstructed in the standard ASM shape space,hence it is more expressive in representing shapes in real life.Then a cost function is developed,based on a study on the search process.An optimal searching method using the feedback information provided by the evaluation cost is proposed to improve the performance of ASM alignment.Experimental results show that the proposed OSS can offer the maximum shape variation with reserving the principal information and a unique local optimal shape is acquired after optimal searching.The combination of OSS and optimal searching can improve the ASM performance greatly.
基金supported by Specialized Research Fund for the Doctoral Program of Higher Education of China(20110022120004)the Fundamental Research Funds for the Central Universities
文摘For density inversion of gravity anomaly data, once the inversion method is determined, the main factors affecting the inversion result are the inversion parameters and subdivision scheme. A set of reasonable inversion parameters and subdivision scheme can, not only improve the inversion process efficiency, but also ensure inversion result accuracy. The gravity inversion method based on correlation searching and the golden section algorithm is an effective potential field inversion method. It can be used to invert 2D and 3D physical properties with potential data observed on flat or rough surfaces. In this paper, we introduce in detail the density inversion principles based on correlation searching and the golden section algorithm. Considering that the gold section algorithm is not globally optimized. we present a heuristic method to ensure the inversion result is globally optimized. With a series of model tests, we systematically compare and analyze the inversion result efficiency and accuracy with different parameters. Based on the model test results, we conclude the selection principles for each inversion parameter with which the inversion accuracy can be obviously improved.
基金The project supported by the National Natural Science Foundation of China(59875045)and the State Key Laboratory of Automobile Safety and Energy Saving(K9705)
文摘A new contact searching algorithm for contact-impact systems is proposed in this paper.In terms of the cell structure and the linked-list,this algo- rithm solves the problem of sorting and searching contacts in three dimensions by transforming it to a retrieving process from two one-dimensional arrays,and binary searching is no longer required.Using this algorithm, the cost of contact searching is reduced to the order of O(N)instead of O(Nlog_2N)for traditional ones,where N is the node number in the system.Moreover,this algorithm can handle contact systems with arbitrary mesh layouts.Due to the simplicity of this algorithm it can be easily implemented in a dynamic explicit finite element program.Our numerical experi- mental result shows that this algorithm is reliable arid efficient for contact searching of three dimensional systems.
基金supported by National Natural Science Foundation of China(Grant No.61004109)Fundamental Research Funds for the Central Universities of China(Grant No.FRF-TP-12-071A)
文摘Existing methods of local search mostly focus on how to reach optimal solution.However,in some emergency situations,search time is the hard constraint for job shop scheduling problem while optimal solution is not necessary.In this situation,the existing method of local search is not fast enough.This paper presents an emergency local search(ELS) approach which can reach feasible and nearly optimal solution in limited search time.The ELS approach is desirable for the aforementioned emergency situations where search time is limited and a nearly optimal solution is sufficient,which consists of three phases.Firstly,in order to reach a feasible and nearly optimal solution,infeasible solutions are repaired and a repair technique named group repair is proposed.Secondly,in order to save time,the amount of local search moves need to be reduced and this is achieved by a quickly search method named critical path search(CPS).Finally,CPS sometimes stops at a solution far from the optimal one.In order to jump out the search dilemma of CPS,a jump technique based on critical part is used to improve CPS.Furthermore,the schedule system based on ELS has been developed and experiments based on this system completed on the computer of Intel Pentium(R) 2.93 GHz.The experimental result shows that the optimal solutions of small scale instances are reached in 2 s,and the nearly optimal solutions of large scale instances are reached in 4 s.The proposed ELS approach can stably reach nearly optimal solutions with manageable search time,and can be applied on some emergency situations.
文摘We present the design and performance of a home-built scanning tunneling microscope (STM), which is compact (66 mm tall and 25 mm in diameter), yet equipped with a 3D atomic precision piezoelectric motor in which the Z coarse approach relies on a high simplic-ity friction-type walker (of our own invention) driven by an axially cut piezoelectric tube. The walker is vertically inserted in a piezoelectric scanner tube (PST) with its brim laying at on the PST end as the inertial slider (driven by the PST) for the XZ (sample plane) motion. The STM is designed to be capable of searching rare microscopic targets (defects, dopants, boundaries, nano-devices, etc.) in a macroscopic sample area (square millimeters) under extreme conditions (low temperatures, strong magnetic elds, etc.) in which it ts. It gives good atomic resolution images after scanning a highly oriented pyrolytic graphite sample in air at room temperature.
基金supported by the National Natural Science Foundation of China(6127125061571460)
文摘A hybrid carrier(HC) scheme based on weighted-type fractional Fourier transform(WFRFT) has been proposed recently.While most of the works focus on HC scheme's inherent characteristics, little attention is paid to the WFRFT modulation recognition.In this paper, a new theory is provided to recognize the WFRFT modulation based on higher order cumulants(HOC). First, it is deduced that the optimal WFRFT received order can be obtained through the minimization of 4 th-order cumulants, C_(42). Then, a combinatorial searching algorithm is designed to minimize C_(42).Finally, simulation results show that the designed scheme has a high recognition rate and the combinatorial searching algorithm is effective and reliable.
文摘Artificial Searching Swarm Algorithm (ASSA) is a new optimization algorithm. ASSA simulates the soldiers to search an enemy’s important goal, and transforms the process of solving optimization problem into the process of searching optimal goal by searching swarm with set rules. This work selects complicated and highn dimension functions to deeply analyse the performance for unconstrained and constrained optimization problems and the results produced by ASSA, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Fish-Swarm Algorithm (AFSA) have been compared. The main factors which influence the performance of ASSA are also discussed. The results demonstrate the effectiveness of the proposed ASSA optimization algorithm.
文摘Two deficiencies in traditional iterative closest pointsimultaneous localization and mapping( ICP-SLAM) usually result in poor real-time performance. On one hand, relative position between current scan frame and global map cannot be previously known. As a result, ICP algorithm will take much amount of iterations to reach convergence. On the other hand,establishment of correspondence is done by global searching, which requires enormous computational time. To overcome the two problems,a fast ICP-SLAM with rough alignment and narrowing-scale nearby searching is proposed. As for the decrease of iterative times,rough alignment based on initial pose matrix is proposed. In detail,initial pose matrix is obtained by micro-electro-mechanical system( MEMS) magnetometer and global landmarks. Then rough alignment will be applied between current scan frame and global map at the beginning of ICP algorithm with initial pose matrix. As for accelerating the establishment of correspondence, narrowingscale nearby searching with dynamic threshold is proposed,where match-points are found within a progressively constrictive range.Compared to traditional ICP-SLAM,the experimental results show that the amount of iteration for ICP algorithm to reach convergence reduces to 92. 34% and ICP algorithm runtime reduces to 98. 86% on average. In addition,computational cost is kept in a stable level due to the eliminating of the accumulation of computational consumption. Moreover,great improvement can also been achieved in SLAM quality and robustness.
基金the National Natural Science Foundation of China (60773065).
文摘The current Grover quantum searching algorithm cannot identify the difference in importance of the search targets when it is applied to an unsorted quantum database, and the probability for each search target is equal. To solve this problem, a Grover searching algorithm based on weighted targets is proposed. First, each target is endowed a weight coefficient according to its importance. Applying these different weight coefficients, the targets are represented as quantum superposition states. Second, the novel Grover searching algorithm based on the quantum superposition of the weighted targets is constructed. Using this algorithm, the probability of getting each target can be approximated to the corresponding weight coefficient, which shows the flexibility of this algorithm. Finally, the validity of the algorithm is proved by a simple searching example.
文摘A quantum image searching method is proposed based on the probability distributions of the readouts from the quantum measurements. It is achieved by using low computational resources which are only a single Hadamard gate combined with m + 1 quantum measurement operations. To validate the proposed method, a simulation experiment is used where the image with the highest similarity value of 0.93 to the particular test image is retrieved as the search result from 4 × 4 binary image database. The proposal provides a basic step for designing a search engine on quantum computing devices where the image in the database is retrieved based on its similarity to the test image.
基金Project(50579101) supported by the National Natural Science Foundation of China
文摘To evaluate the credit risk of customers in power market precisely, the new chaotic searching and fuzzy neural network (FNN) hybrid algorithm were proposed. By combining with the chaotic searching, the learning ability of the FNN was markedly enhanced. Customers’ actual credit flaw data of power supply enterprises were collected to carry on the real evaluation, which can be treated as example for the model. The result shows that the proposed method surpasses the traditional statistical models in regard to the precision of forecasting and has a practical value. Compared with the results of ordinary FNN and ANN, the precision of the proposed algorithm can be enhanced by 2.2% and 4.5%, respectively.
基金supported by Zhejiang Provincial Key Laboratory of Communication Networks and Applications and National Natural Science Foundation of China under Grant No.60872020
文摘In Mobile Ad-hoc Networks (MANETs), routing protocols directly affect various indices of network Quality of Service (QoS), so they play an important role in network performance. To address the drawbacks associated with traditional routing protocols in MANETs, such as poor anti-fading performance and slow convergence rate, for basic Dynamic Source Routing (DSR), we propose a new routing model based on Grover's searching algorithm. With this new routing model, each node maintains a node vector function, and all the nodes can obtain a node probability vector using Grover's algorithm, and then select an optimal routing according to node probability. Simulation results show that compared with DSR, this new routing protocol can effectively extend the network lifetime, as well as reduce the network delay and the number of routing hops. It can also significantly improve the anti-jamming capability of the network.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975132 and 61772295)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019YQ01)the Project of Shandong Provincial Higher Educational Science and Technology Program,China(Grant No.J18KZ012)。
文摘Shenvi et al.have proposed a quantum algorithm based on quantum walking called Shenvi-Kempe-Whaley(SKW)algorithm,but this search algorithm can only search one target state and use a specific search target state vector.Therefore,when there are more than two target nodes in the search space,the algorithm has certain limitations.Even though a multiobjective SKW search algorithm was proposed later,when the number of target nodes is more than two,the SKW search algorithm cannot be mapped to the same quotient graph.In addition,the calculation of the optimal target state depends on the number of target states m.In previous studies,quantum computing and testing algorithms were used to solve this problem.But these solutions require more Oracle calls and cannot get a high accuracy rate.Therefore,to solve the above problems,we improve the multi-target quantum walk search algorithm,and construct a controllable quantum walk search algorithm under the condition of unknown number of target states.By dividing the Hilbert space into multiple subspaces,the accuracy of the search algorithm is improved from p_(c)=(1/2)-O(1/n)to p_(c)=1-O(1/n).And by adding detection gate phase,the algorithm can stop when the amplitude of the target state becomes the maximum for the first time,and the algorithm can always maintain the optimal number of iterations,so as to reduce the number of unnecessary iterations in the algorithm process and make the number of iterations reach t_(f)=(π/2)(?).
基金Project(2017JBZ103)supported by the Fundamental Research Funds for the Central Universities,China
文摘In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).
文摘Considering the characteristics of spatial straightness error, this paper puts forward a kind of evaluation method of spatial straightness error using Geometric Approximation Searching Algorithm (GASA). According to the minimum condition principle of form error evaluation, the mathematic model and optimization objective of the GASA are given. The algorithm avoids the optimization and linearization, and can be fulfilled in three steps. First construct two parallel quadrates based on the preset two reference points of the spatial line respectively;second construct centerlines by connecting one quadrate each vertices to another quadrate each vertices;after that, calculate the distances between measured points and the constructed centerlines. The minimum zone straightness error is obtained by repeating comparing and reconstructing quadrates. The principle and steps of the algorithm to evaluate spatial straightness error is described in detail, and the mathematical formula and program flowchart are given also. Results show that this algorithm can evaluate spatial straightness error more effectively and exactly.
基金supported by National Natural Science Foundation of China under Grants No.61171104
文摘To overcome imperfection of exhaustive based beam searching scheme in IEEE 802.15.3c and IEEE 802.11 ad and accelerate the beam training process, combined with the fast beam searching algorithm previously proposed, this paper proposed a beam codebook design scheme for phased array to not only satisfy the fast beam searching algorithm's demand, but also make good use of the advantage of the searching algorithm. The simulation results prove that the proposed scheme not only performs well on flexibility and searching time complexity, but also has high success ratio.
文摘Suppose that a moving target moves randomly between two sites and its movement is modeled by a homogeneous Markov chain. We consider three classical problems: (1) what kind of strategies are valid? (2) what strategy is the optimal? (3) what is the infimum of expected numbers of looks needed to detect the target? Problem (3) is thoroughly solved, and some partial solutions to problems (1) and (2) are achieved.
基金Project supported by the National Natural Science Foundation of China(Grant No.51272027)
文摘Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index(GII) and bond strain index(BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII & BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.