In this paper, we study the large time behavior of solutions of the parabolic semilinear equation δtu-div(a(x)△↓u) = -|u|^αu in (0,∞) × R^N, where α 〉 0 is constant and a∈ Cb^1(R^N) is a symmetr...In this paper, we study the large time behavior of solutions of the parabolic semilinear equation δtu-div(a(x)△↓u) = -|u|^αu in (0,∞) × R^N, where α 〉 0 is constant and a∈ Cb^1(R^N) is a symmetric periodic matrix satisfying some ellipticity assumptions.Considering an integrable initial data u0 and α ∈ (2/N, 3/N), we prove that the large time behavior of solutions is given by the solution U(t, x) of the homogenized linear problem δtU-div(a^h△↓U)=0,U(0) = C, where a^h is the homogenized matrix of a(x), C is a positive constant and δ is the Dirac measure at 0.展开更多
基金Supported by CNPq-Conselho Nacional de Desenvolvimento Cient'fico e Tecnológico
文摘In this paper, we study the large time behavior of solutions of the parabolic semilinear equation δtu-div(a(x)△↓u) = -|u|^αu in (0,∞) × R^N, where α 〉 0 is constant and a∈ Cb^1(R^N) is a symmetric periodic matrix satisfying some ellipticity assumptions.Considering an integrable initial data u0 and α ∈ (2/N, 3/N), we prove that the large time behavior of solutions is given by the solution U(t, x) of the homogenized linear problem δtU-div(a^h△↓U)=0,U(0) = C, where a^h is the homogenized matrix of a(x), C is a positive constant and δ is the Dirac measure at 0.