期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Feature Selection Based on Difference and Similitude in Data Mining
1
作者 WU Ming YAN Puliu 《Wuhan University Journal of Natural Sciences》 CAS 2007年第3期467-470,共4页
Feature selection is the pretreatment of data mining. Heuristic search algorithms are often used for this subject. Many heuristic search algorithms are based on discernibility matrices, which only consider the differe... Feature selection is the pretreatment of data mining. Heuristic search algorithms are often used for this subject. Many heuristic search algorithms are based on discernibility matrices, which only consider the difference in information system. Because the similar characteristics are not revealed in discernibility matrix, the result may not be the simplest rules. Although differencesimilitude(DS) methods take both of the difference and the similitude into account, the existing search strategy will cause some important features to be ignored. An improved DS based algorithm is proposed to solve this problem in this paper. An attribute rank function, which considers both of the difference and similitude in feature selection, is defined in the improved algorithm. Experiments show that it is an effective algorithm, especially for large-scale databases. The time complexity of the algorithm is O(| C |^2|U |^2). 展开更多
关键词 knowledge reduction feature selection rough set difference set similitude set attribute rank function
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部