Let A be a commutative C^* -algebra. By the Gelfand-Naimark theorem, there exists a locally compact space G such that A is isomorphic to Co(G), the C^*-algebra of all complex continuous functions on G vanishing at...Let A be a commutative C^* -algebra. By the Gelfand-Naimark theorem, there exists a locally compact space G such that A is isomorphic to Co(G), the C^*-algebra of all complex continuous functions on G vanishing at infinity. The result is generalized to the ease of Hopf C^*-algebra, where G is altered by a locally compact group. Using the isomorphic representation, the counit ε and the antipode S of a commutative Hopf C^*-algebra are proposed.展开更多
Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to...Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to be an algebraically closed field of characteristic zero, K a finite group, F K the group algebra of K over F , then all local automorphisms of F K are also characterized.展开更多
Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Ge...Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Gelfand-Naimark-Segal (GNS) representation, D(H) has a faithful^* -representation so that it becomes a Hopf C^* -algebra. The canonical embedding map of H into D(H) is isometric.展开更多
We define the direct limit of the asymptotic direct system of C^(*)-algebras and give some properties of it.Finally,we prove that a C^(*)-algebra is a locally AF-algebra,if and only if it is the direct limit of an asy...We define the direct limit of the asymptotic direct system of C^(*)-algebras and give some properties of it.Finally,we prove that a C^(*)-algebra is a locally AF-algebra,if and only if it is the direct limit of an asymptotic direct system of finite-dimensional C^(*)-algebras.展开更多
We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self abs...We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self absorbing C^(*)-algebra C(e.g., uniformly hyperfinite(UHF)-algebras of infinite type, the Cuntz algebra O_(2)),then we can construct a simple separable unital generalized inductive limit. When C is simple and infinite(resp.properly infinite), the construction is also infinite(resp. properly infinite). When C is simple and approximately divisible, the construction is also approximately divisible. When C is a UHF-algebra and the connecting maps satisfy a trace condition, the construction has tracial rank zero.展开更多
We characterise the positive cone of a real C^(*)-algebra geometrically.Given an open coneΩin a real Banach space V,with the closureΩ,we show thatΩis the interior of the positive cone of a unital real C^(*)-algebra...We characterise the positive cone of a real C^(*)-algebra geometrically.Given an open coneΩin a real Banach space V,with the closureΩ,we show thatΩis the interior of the positive cone of a unital real C^(*)-algebra if and only if it is a Finsler symmetric cone with an orientable extension,which is equivalent to the condition that V is,in an equivalent norm,the Hermitian part of a unital real C^(*)-algebra with the positive coneΩ.展开更多
We give an overview of the question: which positive elements in an operator algebra can be written as a linear combination of projections with positive coefficients. A special case of independent interest is the ques...We give an overview of the question: which positive elements in an operator algebra can be written as a linear combination of projections with positive coefficients. A special case of independent interest is the question of which positive elements can be written as a sum of finitely many projections. We focus on von Neumann Mgebras, on purely infinite simple C^*-algebras, and on their associated multiplier algebras.展开更多
Let A be a unital simple C-algebra of real rank zero,stable rank one,with weakly unperforated K<sub>0</sub>(A)and unique normalized quasi-trace τ,and let X be a compact metric space.We show that two mon...Let A be a unital simple C-algebra of real rank zero,stable rank one,with weakly unperforated K<sub>0</sub>(A)and unique normalized quasi-trace τ,and let X be a compact metric space.We show that two monomorphisms Φ,Ψ:C(X)→A are approximately unitarily equivalent if and only if Φ and Ψ induce the same element in KL(C(X),A)and the two linear functionals τ ο Φ and τ ο Φ are equal.We also show that,with an injectivity condition,an almost multiplicative morphism from C(X) into A with vanishing KK-obstacle is close to a homomorphism.展开更多
We show that the following properties of the C^*-algebras in a class Ω are inherited by simple unital C-algebras in the class TAΩ:(1)(m,n)-decomposable,(2) weakly(m,n)-divisible,(3) weak Riesz interpolation.As an ap...We show that the following properties of the C^*-algebras in a class Ω are inherited by simple unital C-algebras in the class TAΩ:(1)(m,n)-decomposable,(2) weakly(m,n)-divisible,(3) weak Riesz interpolation.As an application,let A be an infinite dimensional simple unital C-algebra such that A has one of the above-listed properties.Suppose that α:G→Aut(A) is an action of a finite group G on A which has the tracial Rokhlin property.Then the crossed product C^*-algebra C^*(G,A,α) also has the property under consideration.展开更多
In the current article,we prove the crossed product C^*-algebra by a Rokhlin action of finite group on a strongly quasidiagonal C^*-algebra is strongly quasidiagonal again.We also show that a just-infinite C^*-algebra...In the current article,we prove the crossed product C^*-algebra by a Rokhlin action of finite group on a strongly quasidiagonal C^*-algebra is strongly quasidiagonal again.We also show that a just-infinite C^*-algebra is quasidiagonal if and only if it is inner quasidiagonal.Finally,we compute the topological free entropy dimension in just-infinite C^*-algebras.展开更多
Let G be an infinite countable group and A be a finite set.IfΣ?A~G is a strongly irreducible subshift of finite type,we endow a locally compact and Hausdorff topology on the homoclinic equivalence relation■onΣand s...Let G be an infinite countable group and A be a finite set.IfΣ?A~G is a strongly irreducible subshift of finite type,we endow a locally compact and Hausdorff topology on the homoclinic equivalence relation■onΣand show that the reduced C^(*)-algebra C_(r)^(*)(■)of■is a unital simple approximately finite(AF)-dimensional C^(*)-algebra.The shift action G of onΣinduces a canonical automorphism action of G on the C^(*)-algebra C_(r)^(*)(■).We give the notion of noncommutative dynamical entropy invariants for amenable group actions on C^(*)-algebras,and show that,if G is an amenable group,then the noncommutative topological entropy of the canonical automorphism action of G on C_(r)^(*)(■)is equal to the topology entropy of the shift action of G onΣ.We also establish the variational principle with respect to the noncommutative measure entropy and the topological entropy for the C^(*)-dynamical system(C_(r)^(*)(■),G).展开更多
Let A be an infinite dimensional stably finite unital simple separable C^(*)-algebra.Let B■A be a stably(centrally)large subalgebra in A such that B is m-almost divisible(m-almost divisible,weakly(m,n)-divisible).The...Let A be an infinite dimensional stably finite unital simple separable C^(*)-algebra.Let B■A be a stably(centrally)large subalgebra in A such that B is m-almost divisible(m-almost divisible,weakly(m,n)-divisible).Then A is 2(m+1)-almost divisible(weakly m-almost divisible,secondly weakly(m,n)-divisible).展开更多
Extending the notion of Haagerup property for finite von Neumann algebras to the general von Neumann algebras, the authors define and study the(**)-Haagerup property for C*-algebras in this paper. They first give an a...Extending the notion of Haagerup property for finite von Neumann algebras to the general von Neumann algebras, the authors define and study the(**)-Haagerup property for C*-algebras in this paper. They first give an answer to Suzuki's question(2013), and then obtain several results of(**)-Haagerup property parallel to those of Haagerup property for C*-algebras. It is proved that a nuclear unital C*-algebra with a faithful tracial state always has the(**)-Haagerup property. Some heredity results concerning the(**)-Haagerup property are also proved.展开更多
We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-tr...We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-triple as the minimum reduced modulus of the mapping Q(a). It is shown that the quadratic conorm of a coincides with the infimum of the squares of the points in the triple spectrum of a. It is established that a contractive bijection between JBW^*-triples is a triple isomorphism if, and only if, it preserves quadratic conorms. The continuity of the quadratic conorm and the generalized inverse are discussed. Some applications to C^*-algebras and von Neumann algebras are also studied.展开更多
Elliott dimension drop interval algebra is an important class among all C^*-algebras in the classification theory.Especially,they are building stones of AHD algebra and the latter contains all AH algebras with the ide...Elliott dimension drop interval algebra is an important class among all C^*-algebras in the classification theory.Especially,they are building stones of AHD algebra and the latter contains all AH algebras with the ideal property of no dimension growth.In this paper,the authors will show two decomposition theorems related to the Elliott dimension drop interval algebra.Their results are key steps in classifying all AH algebras with the ideal property of no dimension growth.展开更多
Let's take H as an infinite-dimensional Hilbert space and K(H) be the set of all compact operators on H. Using Spectral theorem for compact self-adjoint operators, we prove the Hyers-Ulam stability of Jensen z-deri...Let's take H as an infinite-dimensional Hilbert space and K(H) be the set of all compact operators on H. Using Spectral theorem for compact self-adjoint operators, we prove the Hyers-Ulam stability of Jensen z-derivations from K(H) into K(H).展开更多
Further to the functional representations of C^*-algebras proposed by R. Cirelli and A. Manik, we consider the uniform Kahler bundle (UKB) description of some C^*-algebraic subjects. In particular, we obtain a one...Further to the functional representations of C^*-algebras proposed by R. Cirelli and A. Manik, we consider the uniform Kahler bundle (UKB) description of some C^*-algebraic subjects. In particular, we obtain a one-to- one correspondence between closed ideals of a C^*-algebra A and full uniform Kahler subbundles over open subsets of the base space of the UKB associated with A. In addition, we present a geometric description of the pure state space of hereditary C^*-subalgebras and show that if B is a hereditary C^*-subalgebra of A, the UKB of B is a kind of Kahler subbundle of the UKB of A. As a simple example, we consider hereditary C^*-subalgebras of the C^*-algebra of compact operators on a Hilbert space. Finally, we remark that each hereditary C^*- subalgebra of A also can be naturally characterized as a uniform holomorphic Hilbert bundle.展开更多
Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monoton...Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monotone product ,A1 △→ A2 is nuclear if and only if the C^*-algebras ,A1 and A2 both are nuclear.展开更多
文摘Let A be a commutative C^* -algebra. By the Gelfand-Naimark theorem, there exists a locally compact space G such that A is isomorphic to Co(G), the C^*-algebra of all complex continuous functions on G vanishing at infinity. The result is generalized to the ease of Hopf C^*-algebra, where G is altered by a locally compact group. Using the isomorphic representation, the counit ε and the antipode S of a commutative Hopf C^*-algebra are proposed.
基金Supported by the Fundamental Research Funds for the Central Universities
文摘Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to be an algebraically closed field of characteristic zero, K a finite group, F K the group algebra of K over F , then all local automorphisms of F K are also characterized.
文摘Let H be a finite Hopf C^* -algebra and H′be its dual Hopf algebra. Drinfeld's quantum double D(H) of H is a Hopf^*-algebra. There is a faithful positive linear functional θ on D(H). Through the associated Gelfand-Naimark-Segal (GNS) representation, D(H) has a faithful^* -representation so that it becomes a Hopf C^* -algebra. The canonical embedding map of H into D(H) is isometric.
基金Supported by Natural Science Foundation of Jiangsu Province,China (No.BK20171421)。
文摘We define the direct limit of the asymptotic direct system of C^(*)-algebras and give some properties of it.Finally,we prove that a C^(*)-algebra is a locally AF-algebra,if and only if it is the direct limit of an asymptotic direct system of finite-dimensional C^(*)-algebras.
基金supported by the Research Center for Operator Algebras at East China Normal University which is funded by the Science and Technology Commission of Shanghai Municipality (Grant No.13dz2260400)National Natural Science Foundation of China (Grant No.11531003)+1 种基金Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice (Grant No.1361431)the special fund for the Short-Term Training of Graduate Students from East China Normal University。
文摘We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self absorbing C^(*)-algebra C(e.g., uniformly hyperfinite(UHF)-algebras of infinite type, the Cuntz algebra O_(2)),then we can construct a simple separable unital generalized inductive limit. When C is simple and infinite(resp.properly infinite), the construction is also infinite(resp. properly infinite). When C is simple and approximately divisible, the construction is also approximately divisible. When C is a UHF-algebra and the connecting maps satisfy a trace condition, the construction has tracial rank zero.
基金supported by the Engineering and Physical Sciences Research Council,UK(Grant No.EP/R044228/1).
文摘We characterise the positive cone of a real C^(*)-algebra geometrically.Given an open coneΩin a real Banach space V,with the closureΩ,we show thatΩis the interior of the positive cone of a unital real C^(*)-algebra if and only if it is a Finsler symmetric cone with an orientable extension,which is equivalent to the condition that V is,in an equivalent norm,the Hermitian part of a unital real C^(*)-algebra with the positive coneΩ.
文摘We give an overview of the question: which positive elements in an operator algebra can be written as a linear combination of projections with positive coefficients. A special case of independent interest is the question of which positive elements can be written as a sum of finitely many projections. We focus on von Neumann Mgebras, on purely infinite simple C^*-algebras, and on their associated multiplier algebras.
基金Research partially supported by NSF Grants DMS 93-01082(H.L)and DMS-9401515(G.G)This work was reported by the first named author at West Coast Operator Algebras Seminar(Sept.1995,Eugene,Oregon)
文摘Let A be a unital simple C-algebra of real rank zero,stable rank one,with weakly unperforated K<sub>0</sub>(A)and unique normalized quasi-trace τ,and let X be a compact metric space.We show that two monomorphisms Φ,Ψ:C(X)→A are approximately unitarily equivalent if and only if Φ and Ψ induce the same element in KL(C(X),A)and the two linear functionals τ ο Φ and τ ο Φ are equal.We also show that,with an injectivity condition,an almost multiplicative morphism from C(X) into A with vanishing KK-obstacle is close to a homomorphism.
基金Supported by National Natural Sciences Foundation of China(Grant Nos.11501357 and 11571008)。
文摘We show that the following properties of the C^*-algebras in a class Ω are inherited by simple unital C-algebras in the class TAΩ:(1)(m,n)-decomposable,(2) weakly(m,n)-divisible,(3) weak Riesz interpolation.As an application,let A be an infinite dimensional simple unital C-algebra such that A has one of the above-listed properties.Suppose that α:G→Aut(A) is an action of a finite group G on A which has the tracial Rokhlin property.Then the crossed product C^*-algebra C^*(G,A,α) also has the property under consideration.
文摘In the current article,we prove the crossed product C^*-algebra by a Rokhlin action of finite group on a strongly quasidiagonal C^*-algebra is strongly quasidiagonal again.We also show that a just-infinite C^*-algebra is quasidiagonal if and only if it is inner quasidiagonal.Finally,we compute the topological free entropy dimension in just-infinite C^*-algebras.
基金supported by National Natural Science Foundation of China(Grant Nos.11771379,11271224 and 11371290)。
文摘Let G be an infinite countable group and A be a finite set.IfΣ?A~G is a strongly irreducible subshift of finite type,we endow a locally compact and Hausdorff topology on the homoclinic equivalence relation■onΣand show that the reduced C^(*)-algebra C_(r)^(*)(■)of■is a unital simple approximately finite(AF)-dimensional C^(*)-algebra.The shift action G of onΣinduces a canonical automorphism action of G on the C^(*)-algebra C_(r)^(*)(■).We give the notion of noncommutative dynamical entropy invariants for amenable group actions on C^(*)-algebras,and show that,if G is an amenable group,then the noncommutative topological entropy of the canonical automorphism action of G on C_(r)^(*)(■)is equal to the topology entropy of the shift action of G onΣ.We also establish the variational principle with respect to the noncommutative measure entropy and the topological entropy for the C^(*)-dynamical system(C_(r)^(*)(■),G).
基金supported by National Natural Sciences Foundation of China(11501357,11571008)supported by National Natural Sciences Foundation of China(11871375)。
文摘Let A be an infinite dimensional stably finite unital simple separable C^(*)-algebra.Let B■A be a stably(centrally)large subalgebra in A such that B is m-almost divisible(m-almost divisible,weakly(m,n)-divisible).Then A is 2(m+1)-almost divisible(weakly m-almost divisible,secondly weakly(m,n)-divisible).
基金supported by the National Natural Science Foundation of China(No.11371279)the Shandong Provincial Natural Science Foundation of China(No.ZR2015PA010)
文摘Extending the notion of Haagerup property for finite von Neumann algebras to the general von Neumann algebras, the authors define and study the(**)-Haagerup property for C*-algebras in this paper. They first give an answer to Suzuki's question(2013), and then obtain several results of(**)-Haagerup property parallel to those of Haagerup property for C*-algebras. It is proved that a nuclear unital C*-algebra with a faithful tracial state always has the(**)-Haagerup property. Some heredity results concerning the(**)-Haagerup property are also proved.
基金I+D MEC Projects No.MTM 2005-02541,MTM 2004-03882Junta de Andalucfa Grants FQM 0199,FQM 0194,FQM 1215the PCI Project No.A/4044/05 of the Spanish AECI
文摘We revise the notion of von Neumann regularity in JB^*-triples by finding a new characterisation in terms of the range of the quadratic operator Q(a). We introduce the quadratic conorm of an element a in a JB^*-triple as the minimum reduced modulus of the mapping Q(a). It is shown that the quadratic conorm of a coincides with the infimum of the squares of the points in the triple spectrum of a. It is established that a contractive bijection between JBW^*-triples is a triple isomorphism if, and only if, it preserves quadratic conorms. The continuity of the quadratic conorm and the generalized inverse are discussed. Some applications to C^*-algebras and von Neumann algebras are also studied.
文摘Elliott dimension drop interval algebra is an important class among all C^*-algebras in the classification theory.Especially,they are building stones of AHD algebra and the latter contains all AH algebras with the ideal property of no dimension growth.In this paper,the authors will show two decomposition theorems related to the Elliott dimension drop interval algebra.Their results are key steps in classifying all AH algebras with the ideal property of no dimension growth.
文摘Let's take H as an infinite-dimensional Hilbert space and K(H) be the set of all compact operators on H. Using Spectral theorem for compact self-adjoint operators, we prove the Hyers-Ulam stability of Jensen z-derivations from K(H) into K(H).
文摘Further to the functional representations of C^*-algebras proposed by R. Cirelli and A. Manik, we consider the uniform Kahler bundle (UKB) description of some C^*-algebraic subjects. In particular, we obtain a one-to- one correspondence between closed ideals of a C^*-algebra A and full uniform Kahler subbundles over open subsets of the base space of the UKB associated with A. In addition, we present a geometric description of the pure state space of hereditary C^*-subalgebras and show that if B is a hereditary C^*-subalgebra of A, the UKB of B is a kind of Kahler subbundle of the UKB of A. As a simple example, we consider hereditary C^*-subalgebras of the C^*-algebra of compact operators on a Hilbert space. Finally, we remark that each hereditary C^*- subalgebra of A also can be naturally characterized as a uniform holomorphic Hilbert bundle.
基金the Youth Foundation of Sichuan Education Department (No.2003B017)the Doctoral Foundation of Chongqing Normal University (No.08XLB013)
文摘Given two nuclear C^*-algebras A1 and A2 with states φ1 and φ2, we show that the monotone product C^*-algebra A1 △→ A2 is still nuclear. Furthermore, if both the states φ1 and φ2 are faithful, then the monotone product ,A1 △→ A2 is nuclear if and only if the C^*-algebras ,A1 and A2 both are nuclear.