Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices ...Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices p, q are joined by an edge if and only if pq ∈ πe(G). In this case, we write p - q. For p ∈π(G), put deg(p) := |{q ∈ π(G)|p - q}|, which is called the degree of p. We also define D(G) := (deg(p1), deg(p2),..., deg(pk)), where pl 〈 p2 〈 -……〈 pk, which is called the degree pattern of G. We say a group G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups with the same order and degree pattern as G. Specially, a l-fold OD-characterizable group is simply called an OD-characterizable group. Let L := U6(2). In this article, we classify all finite groups with the same order and degree pattern as an almost simple groups related to L. In fact, we prove that L and L.2 are OD-characterizable, L.3 is 3-fold OD-characterizable, and L.S3 is 5-fold OD-characterizable.展开更多
In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=...In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.展开更多
Let G be a finite group and Irr(G)the set of all irreducible complex characters of G.Let cd(G)be the set of all irreducible complex character degrees of G and denote byρ(G)the set of all primes which divide some char...Let G be a finite group and Irr(G)the set of all irreducible complex characters of G.Let cd(G)be the set of all irreducible complex character degrees of G and denote byρ(G)the set of all primes which divide some character degree of G.The character-prime graphΓ(G)associated to G is a simple undirected graph whose vertex set isρ(G)and there is an edge between two distinct primes p and q if and only if the product p q divides some character degree of G.We show that the finite nonabelian simple groups A_(7),J_(1),J_(3),J_(4),L_(3)(3)and U_(3)(4)are uniquely determined by their degree-patterns and orders.展开更多
The spectrum of a finite group is the set of element orders of this group.The main goal of this paper is to survey results concerning recognition of finite simple groups by spectrum,in particular,to list all finite si...The spectrum of a finite group is the set of element orders of this group.The main goal of this paper is to survey results concerning recognition of finite simple groups by spectrum,in particular,to list all finite simple groups for which the recognition problem is solved.展开更多
For G a finite group,π_e(G)denotes the set of orders of elements in G.If Ω is a subset of the set of natural numbers,h(Ω)stands for the number of isomorphism classes of finite groups with the same set Ω of element...For G a finite group,π_e(G)denotes the set of orders of elements in G.If Ω is a subset of the set of natural numbers,h(Ω)stands for the number of isomorphism classes of finite groups with the same set Ω of element orders.We say that G is k-distinguishable if h(π_(G))=k<∞,otherwise G is called non-distinguishable.Usually,a 1-distinguishable group is called a characterizable group.It is shown that if M is a sporadic simple group different from M_(12),M_(22),J_2,He,Suz,M^cL and O'N, then Aut(M)is charaeterizable by its dement orders.It is also proved that if M is isomorphic to M_(12),M_(22),He,Suz or O'N,then h(π_e(Aut(M)))∈{1,∞}.展开更多
The structure of inner p closed groups for p=2,3,5 are known (see ). In this paper, we shall dermine the structure of the inner 7 closed simple groups.
Let G be a finite group and S be a finite simple group. In this paper, we prove that if G and S have the same sets of all orders of solvable subgroups, then G is isomorphic to S, or G and S are isomorphic to Bn(q), Cn...Let G be a finite group and S be a finite simple group. In this paper, we prove that if G and S have the same sets of all orders of solvable subgroups, then G is isomorphic to S, or G and S are isomorphic to Bn(q), Cn(q), where n≥3 and q is odd. This gives a positive answer to the problem put forward by Abe and Iiyori.展开更多
The spectrum of a finite group is the set of its element orders,and two groups are said to be isospectral if they have the same spectra.A finite group G is said to be recognizable by spectrum,if every finite group iso...The spectrum of a finite group is the set of its element orders,and two groups are said to be isospectral if they have the same spectra.A finite group G is said to be recognizable by spectrum,if every finite group isospectral with G is isomorphic to G.We prove that if S is one of the sporadic simple groups M^(c)L,M_(12),M_(22),He,Suz and O'N,then Aut(S)is recognizable by spectrum.This finishes the proof of the recognizability by spectrum of the automorphism groups of all sporadic simple groups,except J_(2).展开更多
For the non-Abelian simple groups with Abelian Sylow 2-subgroups J. H. Walterhas proved the following famous theorem. Lemma 1. If F is a non-Ablian simple group with Abelian Sylow 2-subgroups, thenone of the following...For the non-Abelian simple groups with Abelian Sylow 2-subgroups J. H. Walterhas proved the following famous theorem. Lemma 1. If F is a non-Ablian simple group with Abelian Sylow 2-subgroups, thenone of the following holds:(i)F≌PSL(2,Q),q】3,q≡3,5(mod 8) or q=2<sup>n</sup>,n≥2;(ii)F≌J<sub>1</sub>;(iii)F≌R(q),q=3<sup>2m+1</sup>,m≥1.Let G be a finite group and let π<sub>e</sub>(G) denote the set of all orders of elements展开更多
Let G be a finite group with order |G|=p1^α1p2^α2……pk^αk, where p1 〈 p2 〈……〈 Pk are prime numbers. One of the well-known simple graphs associated with G is the prime graph (or Gruenberg- Kegel graph) den...Let G be a finite group with order |G|=p1^α1p2^α2……pk^αk, where p1 〈 p2 〈……〈 Pk are prime numbers. One of the well-known simple graphs associated with G is the prime graph (or Gruenberg- Kegel graph) denoted .by г(G) (or GK(G)). This graph is constructed as follows: The vertex set of it is π(G) = {p1,p2,…,pk} and two vertices pi, pj with i≠j are adjacent by an edge (and we write pi - pj) if and only if G contains an element of order pipj. The degree deg(pi) of a vertex pj ∈π(G) is the number of edges incident on pi. We define D(G) := (deg(p1), deg(p2),..., deg(pk)), which is called the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non- isomorphic groups H such that |H| = |G| and D(H) = D(G). Moreover, a 1-fold OD-characterizable group is simply called OD-characterizable. Let L := U3(5) be the projective special unitary group. In this paper, we classify groups with the same order and degree pattern as an almost simple group related to L. In fact, we obtain that L and L.2 are OD-characterizable; L.3 is 3-fold OD-characterizable; L.S3 is 6-fold OD-characterizable.展开更多
A graph is said to be s-arc-regular if its full automorphism group acts regularly on the set of its s-arcs. In this paper, we investigate connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups....A graph is said to be s-arc-regular if its full automorphism group acts regularly on the set of its s-arcs. In this paper, we investigate connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups. Two sufficient and necessary conditions for such graphs to be 1- or 2-arcregular are given and based on the conditions, several infinite families of 1- or 2-arc-regular cubic Cayley graphs of alternating groups are constructed.展开更多
A graph Г is said to be G-locally primitive, where G is a subgroup of automorphisms of Г, if the stabiliser Ga of a vertex α acts primitively on the set Г( α ) of vertices of Г adjacent to α. For a finite non-a...A graph Г is said to be G-locally primitive, where G is a subgroup of automorphisms of Г, if the stabiliser Ga of a vertex α acts primitively on the set Г( α ) of vertices of Г adjacent to α. For a finite non-abelian simple group L and a Cayley subset S of L, suppose that L ? G ? Aut( L), and the Cayley graph Г = Cay ( L, S) is G-locally primitive. In this paper we prove that L is a simple group of Lie type, and either the valency of Г is an add prine divisor of |Out(L)|, orL =PΩ 8 + (q) and Г has valency 4. In either cases, it is proved that the full automorphism group of Г is also almost simple with the same socle L.展开更多
Let G be an extension of a finite characteristically simple group by an abelian group or a finite simple group.It is shown that every Coleman automorphism of G is an inner automorphism.Interest in such automorphisms a...Let G be an extension of a finite characteristically simple group by an abelian group or a finite simple group.It is shown that every Coleman automorphism of G is an inner automorphism.Interest in such automorphisms arises from the study of the normalizer problem for integral group rings.展开更多
As a continuation of previous work, in this paper, we mainly study the finite simple groups which have abelian Sylow subgroups in term of p-local rank, especially a group theoretic characterization will be given.
In this paper, we obtain some classification theorems of finite simple groups with two subgroups of coprime indices which are both supersolvable or one supersolvable and the other nilpotent. Using these classification...In this paper, we obtain some classification theorems of finite simple groups with two subgroups of coprime indices which are both supersolvable or one supersolvable and the other nilpotent. Using these classification theorems, we prove some sufficient conditions of finite solvable groups. Finally, we provide a supplement of Doerks Theorem.展开更多
In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In ...In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In this paper, we calculate the contributions of this new particle to the processes e^+e^-→l^+l^-, bb^-, and cc^- and study the possibility of detecting this new particle via these processes in the future high-energy linear e^+e^- collider(LC) experiments with √s= 500 GeV and £int= 340 fb^-1. We find that the new gauge boson Z' is most sensitive to the process e^+e^-→b^+b^-. As long as Mz,≤2 TeV , the absolute values of the relative correction parameter are larger than 5%. We calculate the forward-backward asymmetries and left-right asymmetries for the process e^+e^-→c^+c^-, with both the universal and anomaly-free fermion embeddings. Bounds on Z' masses are also estimated within 95% confidence level.展开更多
基金Supported partially by Scientific Research and Development Project of Higher Colleges of Shanxi Province(200713035)Supported by the Key Laboratory of Mathematics Mechanization(KLMM07013)
文摘In this note, we use an elementary method to prove the fact: if G is a nonabelian simple group, then 2 ∈ cdp(G), where p is a prime and p 〉 2.
基金supported by Natural Science Foundation Project of CQ CSTC (2010BB9206)NNSF of China (10871032)+1 种基金Fundamental Research Funds for the Central Universities (Chongqing University, CDJZR10100009)National Science Foundation for Distinguished Young Scholars of China (11001226)
文摘Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices p, q are joined by an edge if and only if pq ∈ πe(G). In this case, we write p - q. For p ∈π(G), put deg(p) := |{q ∈ π(G)|p - q}|, which is called the degree of p. We also define D(G) := (deg(p1), deg(p2),..., deg(pk)), where pl 〈 p2 〈 -……〈 pk, which is called the degree pattern of G. We say a group G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups with the same order and degree pattern as G. Specially, a l-fold OD-characterizable group is simply called an OD-characterizable group. Let L := U6(2). In this article, we classify all finite groups with the same order and degree pattern as an almost simple groups related to L. In fact, we prove that L and L.2 are OD-characterizable, L.3 is 3-fold OD-characterizable, and L.S3 is 5-fold OD-characterizable.
文摘In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.
基金supported by NSFC(12071484)Hunan Provincial Natural Science Foundation(2020JJ4675)Foundation of Guangdong University of Science and Technology.
文摘Let G be a finite group and Irr(G)the set of all irreducible complex characters of G.Let cd(G)be the set of all irreducible complex character degrees of G and denote byρ(G)the set of all primes which divide some character degree of G.The character-prime graphΓ(G)associated to G is a simple undirected graph whose vertex set isρ(G)and there is an edge between two distinct primes p and q if and only if the product p q divides some character degree of G.We show that the finite nonabelian simple groups A_(7),J_(1),J_(3),J_(4),L_(3)(3)and U_(3)(4)are uniquely determined by their degree-patterns and orders.
基金supported by Foreign Experts program in Jiangsu Province(No.JSB2018014)supported by the National Natural Science Foundation of China(No.12171126)+1 种基金supported by the RFBR(No.20-51-00007)supported by the National Natural Science Foundation of China(11171364,11671063).
文摘The spectrum of a finite group is the set of element orders of this group.The main goal of this paper is to survey results concerning recognition of finite simple groups by spectrum,in particular,to list all finite simple groups for which the recognition problem is solved.
基金This work has been partially sopported by the Research Institute for Fundamental Sciences Tabriz,Iran
文摘For G a finite group,π_e(G)denotes the set of orders of elements in G.If Ω is a subset of the set of natural numbers,h(Ω)stands for the number of isomorphism classes of finite groups with the same set Ω of element orders.We say that G is k-distinguishable if h(π_(G))=k<∞,otherwise G is called non-distinguishable.Usually,a 1-distinguishable group is called a characterizable group.It is shown that if M is a sporadic simple group different from M_(12),M_(22),J_2,He,Suz,M^cL and O'N, then Aut(M)is charaeterizable by its dement orders.It is also proved that if M is isomorphic to M_(12),M_(22),He,Suz or O'N,then h(π_e(Aut(M)))∈{1,∞}.
文摘The structure of inner p closed groups for p=2,3,5 are known (see ). In this paper, we shall dermine the structure of the inner 7 closed simple groups.
基金the National Natural Science Foundation of China (Grant No. 10571128)the National Science Foundation of Jiangsu College and University (Grant No. 03KJB110112)Suzhou City Senior Talent Supporting Project
文摘Let G be a finite group and S be a finite simple group. In this paper, we prove that if G and S have the same sets of all orders of solvable subgroups, then G is isomorphic to S, or G and S are isomorphic to Bn(q), Cn(q), where n≥3 and q is odd. This gives a positive answer to the problem put forward by Abe and Iiyori.
基金Project supported by the National Natural Science Foundation(Grant No.10171074)Jiangsu Natural Science Foundation(Grant No.BK200133)the Foundation of State Education Ministry of China
文摘In this paper the following theorem is proved: Every group L3(q) for q = 3^(2m-1)(m≥2) is characterized by its set of element orders.
基金This work is supported by Russian Science Foundation(Project No.14-21-00065).
文摘The spectrum of a finite group is the set of its element orders,and two groups are said to be isospectral if they have the same spectra.A finite group G is said to be recognizable by spectrum,if every finite group isospectral with G is isomorphic to G.We prove that if S is one of the sporadic simple groups M^(c)L,M_(12),M_(22),He,Suz and O'N,then Aut(S)is recognizable by spectrum.This finishes the proof of the recognizability by spectrum of the automorphism groups of all sporadic simple groups,except J_(2).
文摘For the non-Abelian simple groups with Abelian Sylow 2-subgroups J. H. Walterhas proved the following famous theorem. Lemma 1. If F is a non-Ablian simple group with Abelian Sylow 2-subgroups, thenone of the following holds:(i)F≌PSL(2,Q),q】3,q≡3,5(mod 8) or q=2<sup>n</sup>,n≥2;(ii)F≌J<sub>1</sub>;(iii)F≌R(q),q=3<sup>2m+1</sup>,m≥1.Let G be a finite group and let π<sub>e</sub>(G) denote the set of all orders of elements
基金Supported by National Natural Science Foundation of China (Grant No. 10871032)the SRFDP of China (Grant No. 20660285002)a subproject of National Natural Science Foundation of China (Grant No. 50674008) (Chongqing University, Nos. 104207520080834, 104207520080968)
文摘Let G be a finite group with order |G|=p1^α1p2^α2……pk^αk, where p1 〈 p2 〈……〈 Pk are prime numbers. One of the well-known simple graphs associated with G is the prime graph (or Gruenberg- Kegel graph) denoted .by г(G) (or GK(G)). This graph is constructed as follows: The vertex set of it is π(G) = {p1,p2,…,pk} and two vertices pi, pj with i≠j are adjacent by an edge (and we write pi - pj) if and only if G contains an element of order pipj. The degree deg(pi) of a vertex pj ∈π(G) is the number of edges incident on pi. We define D(G) := (deg(p1), deg(p2),..., deg(pk)), which is called the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non- isomorphic groups H such that |H| = |G| and D(H) = D(G). Moreover, a 1-fold OD-characterizable group is simply called OD-characterizable. Let L := U3(5) be the projective special unitary group. In this paper, we classify groups with the same order and degree pattern as an almost simple group related to L. In fact, we obtain that L and L.2 are OD-characterizable; L.3 is 3-fold OD-characterizable; L.S3 is 6-fold OD-characterizable.
基金supported by Guangxi Science Foundations (Grant No. 0832054)Guangxi Postgraduate Education Innovation Research (Grant No. 2008105930701M102)
文摘A graph is said to be s-arc-regular if its full automorphism group acts regularly on the set of its s-arcs. In this paper, we investigate connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups. Two sufficient and necessary conditions for such graphs to be 1- or 2-arcregular are given and based on the conditions, several infinite families of 1- or 2-arc-regular cubic Cayley graphs of alternating groups are constructed.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 69873002).
文摘A graph Г is said to be G-locally primitive, where G is a subgroup of automorphisms of Г, if the stabiliser Ga of a vertex α acts primitively on the set Г( α ) of vertices of Г adjacent to α. For a finite non-abelian simple group L and a Cayley subset S of L, suppose that L ? G ? Aut( L), and the Cayley graph Г = Cay ( L, S) is G-locally primitive. In this paper we prove that L is a simple group of Lie type, and either the valency of Г is an add prine divisor of |Out(L)|, orL =PΩ 8 + (q) and Г has valency 4. In either cases, it is proved that the full automorphism group of Г is also almost simple with the same socle L.
基金supported by the National Natural Science Foundation of China(Grant No.11871292).
文摘Let G be an extension of a finite characteristically simple group by an abelian group or a finite simple group.It is shown that every Coleman automorphism of G is an inner automorphism.Interest in such automorphisms arises from the study of the normalizer problem for integral group rings.
基金supported by National Natural Science Foundation of China (Grant No. 10701006)
文摘As a continuation of previous work, in this paper, we mainly study the finite simple groups which have abelian Sylow subgroups in term of p-local rank, especially a group theoretic characterization will be given.
文摘In this paper, we obtain some classification theorems of finite simple groups with two subgroups of coprime indices which are both supersolvable or one supersolvable and the other nilpotent. Using these classification theorems, we prove some sufficient conditions of finite solvable groups. Finally, we provide a supplement of Doerks Theorem.
基金supported in part by a grant from Henan Institute of Science and Technology under Grant No.06040
文摘In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In this paper, we calculate the contributions of this new particle to the processes e^+e^-→l^+l^-, bb^-, and cc^- and study the possibility of detecting this new particle via these processes in the future high-energy linear e^+e^- collider(LC) experiments with √s= 500 GeV and £int= 340 fb^-1. We find that the new gauge boson Z' is most sensitive to the process e^+e^-→b^+b^-. As long as Mz,≤2 TeV , the absolute values of the relative correction parameter are larger than 5%. We calculate the forward-backward asymmetries and left-right asymmetries for the process e^+e^-→c^+c^-, with both the universal and anomaly-free fermion embeddings. Bounds on Z' masses are also estimated within 95% confidence level.