期刊文献+
共找到80,976篇文章
< 1 2 250 >
每页显示 20 50 100
Nonlinear vibration of Timoshenko FG porous sandwich beams subjected to a harmonic axial load
1
作者 Milad Lezgi Moein Zanjanchi Nikoo Majid Ghadiri 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期649-662,共14页
In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitud... In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitude.To do so,the Timoshenko beam theory is utilized to take the shear deformations into account,and the nonlinear Von-Karman approach is adopted to acquire the equations of motion.Then,to turn the partial differential equations(PDEs)into ordinary differential equations(ODEs)in the case of equations of motion,the method of Galerkin is employed,followed by the multiple time scale method to solve the resulting equations.The impact of parameters affecting the response of the beam,including the porosity distribution,porosity coefficient,temperature increments,slenderness,thickness,and damping ratios,are explicitly discussed.It is found that the parameters mentioned above affect the bifurcation points and instability of the sandwich porous beams,some of which,including the effect of temperature and porosity distribution,are less noticeable. 展开更多
关键词 sandwich beam Timoshenko beam parametric excitation bifurcation diagrams dynamic instability
下载PDF
Chebyshev polynomial-based Ritz method for thermal buckling and free vibration behaviors of metal foam beams
2
作者 N.D.NGUYEN T.N.NGUYEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期891-910,共20页
This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and tw... This study presents the Chebyshev polynomials-based Ritz method to examine the thermal buckling and free vibration characteristics of metal foam beams.The analyses include three models for porosity distribution and two scenarios for thermal distribution.The material properties are assessed under two conditions,i.e.,temperature dependence and temperature independence.The theoretical framework for the beams is based on the higher-order shear deformation theory,which incorporates shear deformations with higher-order polynomials.The governing equations are established from the Lagrange equations,and the beam displacement fields are approximated by the Chebyshev polynomials.Numerical simulations are performed to evaluate the effects of thermal load,slenderness,boundary condition(BC),and porosity distribution on the buckling and vibration behaviors of metal foam beams.The findings highlight the significant influence of temperature-dependent(TD)material properties on metal foam beams'buckling and vibration responses. 展开更多
关键词 Ritz method Chebyshev function BUCKLING VIBRATION metal foam beam higher-order beam theory(HOBT)
下载PDF
Optical trapping capability of tornado circular Pearcey beams
3
作者 刘娜娜 唐晓莹 +1 位作者 刘舜禹 梁毅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期401-407,共7页
We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pear... We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pearcey beams with different radii.Our theoretical exploration delves into various aspects,including the propagation dynamics,energy flux,orbital angular momentum,trapping force,and torque characteristics of TCPBs.The results reveal that the orbital angular momentum,trapping force,and torque of these beams can be finely tuned through the judicious manipulation of their topological charges(l_(1)and l_(2)).Notably,we observe a precise control mechanism wherein the force diminishes with|l_(1)+l_(2)|and|l_(1)-l_(2)|,while the torque exhibits enhancement by decreasing solely with|l_(1)+l_(2)|or increasing with|l_(1)-l_(2)|.These results not only provide quantitative insights into the optical trapping performance of TCPBs but also serve as a valuable reference for the ongoing development of innovative photonic tools. 展开更多
关键词 trapping capability tornado beams autofocusing
下载PDF
Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
4
作者 Pengcheng Huo Ruixuan Yu +3 位作者 Mingze Liu Hui Zhang Yan-qing Lu Ting Xu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期14-21,共8页
An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So fa... An electron vortex beam(EVB) carrying orbital angular momentum(OAM) plays a key role in a series of fundamental scientific researches, such as chiral energy-loss spectroscopy and magnetic dichroism spectroscopy. So far, almost all the experimentally created EVBs manifest isotropic doughnut intensity patterns. Here, based on the correlation between local divergence angle of electron beam and phase gradient along azimuthal direction, we show that free electrons can be tailored to EVBs with customizable intensity patterns independent of the carried OAM. As proof-of-concept, by using computer generated hologram and designing phase masks to shape the incident free electrons in the transmission electron microscope, three structured EVBs carrying identical OAM are tailored to exhibit completely different intensity patterns. Furthermore, through the modal decomposition, we quantitatively investigate their OAM spectral distributions and reveal that structured EVBs present a superposition of a series of different eigenstates induced by the locally varied geometries. These results not only generalize the concept of EVB, but also demonstrate an extra highly controllable degree of freedom for electron beam manipulation in addition to OAM. 展开更多
关键词 electron vortex beam orbital angular momentum diffraction holography
下载PDF
Diffraction deep neural network-based classification for vector vortex beams
5
作者 彭怡翔 陈兵 +1 位作者 王乐 赵生妹 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期387-392,共6页
The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably a... The vector vortex beam(VVB)has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications.However,a VVB is unavoidably affected by atmospheric turbulence(AT)when it propagates through the free-space optical communication environment,which results in detection errors at the receiver.In this paper,we propose a VVB classification scheme to detect VVBs with continuously changing polarization states under AT,where a diffractive deep neural network(DDNN)is designed and trained to classify the intensity distribution of the input distorted VVBs,and the horizontal direction of polarization of the input distorted beam is adopted as the feature for the classification through the DDNN.The numerical simulations and experimental results demonstrate that the proposed scheme has high accuracy in classification tasks.The energy distribution percentage remains above 95%from weak to medium AT,and the classification accuracy can remain above 95%for various strengths of turbulence.It has a faster convergence and better accuracy than that based on a convolutional neural network. 展开更多
关键词 vector vortex beam diffractive deep neural network classification atmospheric turbulence
下载PDF
Theoretical Analysis on Deflection and Bearing Capacity of Prestressed Bamboo-Steel Composite Beams
6
作者 Qifeng Shan Ming Mao Yushun Li 《Journal of Renewable Materials》 EI CAS 2024年第1期149-166,共18页
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea... A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application. 展开更多
关键词 Bamboo scrimber composite beam PRESTRESS DEFLECTION bearing capacity
下载PDF
Near-Field Wireless Power Transfer, Sensing and Communication with Bessel Beams
7
作者 CAO Xinghan YIN Huarui YOU Changsheng 《ZTE Communications》 2024年第1期53-61,共9页
The Bessel beam,characterized by its unique non-diffracting properties,holds promising applications.In this paper,we provide a detailed introduction and investigation into the theory and research of the Bessel beam,wi... The Bessel beam,characterized by its unique non-diffracting properties,holds promising applications.In this paper,we provide a detailed introduction and investigation into the theory and research of the Bessel beam,with a special focus on its generation and applications in the near-field region.We provide an introduction to the concepts,properties,and foundational theories of the Bessel beam.Additionally,the current study on generating Bessel beams and their applications is categorized and discussed,and potential research challenges are proposed in this paper.This review serves as a solid foundation for researchers to understand the concept of the Bessel beam and explore its potential applications. 展开更多
关键词 Bessel beams NEAR-FIELD non-diffractive beams beam synthesis technology
下载PDF
Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force
8
作者 Xiaodong GUO Zhu SU Lifeng WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期295-310,共16页
A theoretical model for the multi-span spinning beams with elastic constraints under an axial compressive force is proposed.The displacement and bending angle functions are represented through an improved Fourier seri... A theoretical model for the multi-span spinning beams with elastic constraints under an axial compressive force is proposed.The displacement and bending angle functions are represented through an improved Fourier series,which ensures the continuity of the derivative at the boundary and enhances the convergence.The exact characteristic equations of the multi-span spinning beams with elastic constraints under an axial compressive force are derived by the Lagrange equation.The efficiency and accuracy of the present method are validated in comparison with the finite element method(FEM)and other methods.The effects of the boundary spring stiffness,the number of spans,the spinning velocity,and the axial compressive force on the dynamic characteristics of the multi-span spinning beams are studied.The results show that the present method can freely simulate any boundary constraints without modifying the solution process.The elastic range of linear springs is larger than that of torsion springs,and it is not affected by the number of spans.With an increase in the axial compressive force,the attenuation rate of the natural frequency of a spinning beam with a large number of spans becomes larger,while the attenuation rate with an elastic boundary is lower than that under a classic simply supported boundary. 展开更多
关键词 multi-span spinning beam elastic constraint improved Fourier series free vibration semi-analytical solution
下载PDF
Feasibility of medical radioisotope production based on the proton beams at China Spallation Neutron Source
9
作者 Bing Jiang Bin-Bin Tian +1 位作者 Han-Tao Jing Qi-Fan Dong 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期26-39,共14页
The utilization of a proton beam from the China Spallation Neutron Source(CSNS)for producing medical radioisotopes is appealing owing to its high current intensity and high energy.The medical isotope production based ... The utilization of a proton beam from the China Spallation Neutron Source(CSNS)for producing medical radioisotopes is appealing owing to its high current intensity and high energy.The medical isotope production based on the proton beam at the CSNS is significant for the development of future radiopharmaceuticals,particularly for theα-emitting radiopharmaceu-ticals.The production yield and activity of typical medical isotopes were estimated using the FLUKA simulation.The results indicate that the 300-MeV proton beam with a power of 100 kW at CSNS-II is highly suitable for proof-of-principle studies of most medical radioisotopes.In particular,this proton beam offers tremendous advantages for the large-scale production of alpha radioisotopes,such as 225Ac,whose theoretical production yield can reach approximately 57 Ci/week.Based on these results,we provide perspectives on the use of CSNS proton beams to produce radioisotopes for medical applications. 展开更多
关键词 CSNS proton beam Medical isotope production α-Emitting radionuclides Nuclidic purity analysis
下载PDF
Dynamic Characteristics of Functionally Graded Timoshenko Beams by Improved Differential Quadrature Method
10
作者 Xiaojun Huang Liaojun Zhang +1 位作者 Hanbo Cui Gaoxing Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1647-1668,共22页
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node... This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature. 展开更多
关键词 Timoshenko beams functionally graded materials dynamic characteristics natural frequency improved differential quadrature method
下载PDF
Transfer matrix method for free and forced vibrations of multi-level functionally graded material stepped beams with different boundary conditions
11
作者 Xiaoyang SU Tong HU +3 位作者 Wei ZHANG Houjun KANG Yunyue CONG Quan YUAN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期983-1000,共18页
Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore th... Functionally graded materials(FGMs)are a novel class of composite materials that have attracted significant attention in the field of engineering due to their unique mechanical properties.This study aims to explore the dynamic behaviors of an FGM stepped beam with different boundary conditions based on an efficient solving method.Under the assumptions of the Euler-Bernoulli beam theory,the governing differential equations of an individual FGM beam are derived with Hamilton’s principle and decoupled via the separation-of-variable approach.Then,the free and forced vibrations of the FGM stepped beam are solved with the transfer matrix method(TMM).Two models,i.e.,a three-level FGM stepped beam and a five-level FGM stepped beam,are considered,and their natural frequencies and mode shapes are presented.To demonstrate the validity of the method in this paper,the simulation results by ABAQUS are also given.On this basis,the detailed parametric analyses on the frequencies and dynamic responses of the three-level FGM stepped beam are carried out.The results show the accuracy and efficiency of the TMM. 展开更多
关键词 transfer matrix method(TMM) free vibration forced vibration functionally graded material(FGM) stepped beam
下载PDF
Intensity correlation properties of x-ray beams split with Laue diffraction
12
作者 赵昌哲 司尚禹 +3 位作者 张海鹏 薛莲 李中亮 肖体乔 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期379-383,共5页
Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we i... Beam splitting is one of the main approaches to achieving x-ray ghost imaging, and the intensity correlation between diffraction beam and transmission beam will directly affect the imaging quality. In this paper, we investigate the intensity correlation between the split x-ray beams by Laue diffraction of stress-free crystal. The analysis based on the dynamical theory of x-ray diffraction indicates that the spatial resolution of diffraction image and transmission image are reduced due to the position shift of the exit beam. In the experimental setup, a stress-free crystal with a thickness of hundredmicrometers-level is used for beam splitting. The crystal is in a non-dispersive configuration equipped with a double-crystal monochromator to ensure that the dimension of the diffraction beam and transmission beam are consistent. A correlation coefficient of 0.92 is achieved experimentally and the high signal-to-noise ratio of the x-ray ghost imaging is anticipated.Results of this paper demonstrate that the developed beam splitter of Laue crystal has the potential in the efficient data acquisition of x-ray ghost imaging. 展开更多
关键词 x-ray ghost imaging beam splitting with Laue diffraction intensity correlation dynamical theory of x-ray diffraction
下载PDF
Seismic performance evaluation of hybrid coupled shear wall system with shear and flexural fuse-type steel coupling beams
13
作者 Zahra Ramezandoust Abbas Tajaddini Panam Zarfam 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期691-712,共22页
Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically... Replaceable flexural and shear fuse-type coupling beams are used in hybrid coupled shear wall(HCSW)systems,enabling concrete buildings to be promptly recovered after severe earthquakes.This study aimed to analytically evaluate the seismic behavior of flexural and shear fuse beams situated in short-,medium-and high-rise RC buildings that have HCSWs.Three building groups hypothetically located in a high seismic hazard zone were studied.A series of 2D nonlinear time history analyses was accomplished in OpenSees,using the ground motion records scaled at the design basis earthquake level.It was found that the effectiveness of fuses in HCSWs depends on various factors such as size and scale of the building,allowable rotation value,inter-story drift ratio,residual drift quantity,energy dissipation value of the fuses,etc.The results show that shear fuses better meet the requirements of rotations and drifts.In contrast,flexural fuses dissipate more energy,but their sectional stiffness should increase to meet other requirements.It was concluded that adoption of proper fuses depends on the overall scale of the building and on how associated factors are considered. 展开更多
关键词 hybrid coupled shear wall steel fuse coupling beam shear and flexural fuse nonlinear dynamic analysis seismic performance
下载PDF
Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fbers
14
作者 H.M.FEIZABAD M.H.YAS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期543-562,共20页
Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers ar... Natural fibers have been extensively researched as reinforcement materials in polymers on account of their environmental and economic advantages in comparison with synthetic fibers in the recent years.Bamboo fibers are renowned for their good mechanical properties,abundance,and short cycle growth.As beams are one of the fundamental structural components and are susceptible to mechanical loads in engineering applications,this paper performs a study on the free vibration and buckling responses of bamboo fiber reinforced composite(BFRC)beams on the elastic foundation.Three different functionally graded(FG)layouts and a uniform one are the considered distributions for unidirectional long bamboo fibers across the thickness.The elastic properties of the composite are determined with the law of mixture.Employing Hamilton’s principle,the governing equations of motion are obtained.The generalized differential quadrature method(GDQM)is then applied to the equations to obtain the results.The achieved outcomes exhibit that the natural frequency and buckling load values vary as the fiber volume fractions and distributions,elastic foundation stiffness values,and boundary conditions(BCs)and slenderness ratio of the beam change.Furthermore,a comparative study is conducted between the derived analysis outcomes for BFRC and homogenous polymer beams to examine the effectiveness of bamboo fibers as reinforcement materials,demonstrating the significant enhancements in both vibration and buckling responses,with the exception of natural frequencies for cantilever beams on the Pasternak foundation with the FG-◇fiber distribution.Eventually,the obtained analysis results of BFRC beams are also compared with those for carbon nanotube reinforced composite(CNTRC)beams found in the literature,indicating that the buckling loads and natural frequencies of BFRC beams are lower than those of CNTRC beams. 展开更多
关键词 bamboo fiber free vibration buckling analysis functionally graded(FG)beam elastic foundation generalized differential quadrature method(GDQM)
下载PDF
Numerical Study of the Vibrations of Beams with Variable Stiffness under Impulsive or Harmonic Loading
15
作者 Moussa Sali Fabien Kenmogne +1 位作者 Jean Bertin Nkibeu Abdou Njifenjou 《World Journal of Engineering and Technology》 2024年第2期401-425,共25页
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho... The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%. 展开更多
关键词 Successive Approximations Method Direct Integration Differential Equations beams of Variable Stiffness Quadratic Parabola Impulse and Harmonic Loads
下载PDF
Nonlinear coupling modeling and dynamics analysis of rotating flexible beams with stretching deformation effect 被引量:1
16
作者 Xiaokang DU Yuanzhao CHEN +3 位作者 Jing ZHANG Xian GUO Liang LI Dingguo ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期125-140,共16页
Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for ... Dynamic coupling modeling and analysis of rotating beams based on the nonlinear Green-Lagrangian strain are introduced in this work.With the reservation of the axial nonlinear strain,there are more coupling terms for axial and transverse deformations.The discretized dynamic governing equations are obtained by using the finite element method and Lagrange’s equations of the second kind.Time responses are conducted to compare the proposed model with other previous models.The stretching deformation due to rotating motion is observed and calculated by special formulations under dynamic equilibrium.The stretching deformation and the change of the associated equilibrium position are taken into account to analyze the free vibration and frequency response of the rotating beams.Analytical and numerical comparisons show that the proposed model can provide reliable results,while the previous models may lead to imprecise results,especially in high-speed conditions. 展开更多
关键词 rotating beam finite element method stiffening effect stretching deformation dynamic equilibrium
下载PDF
Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals 被引量:1
17
作者 舒凌云 程科 +2 位作者 廖赛 梁梦婷 杨嶒浩 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期323-331,共9页
To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized ... To explore the effect of non-uniform polarization on orbital angular momentum(OAM) in anisotropic medium, in this work investigated are the evolution of the spiral spectra and OAM densities of non-uniformly polarized vortex(NUPV)beams in uniaxial crystals propagating orthogonal to the optical axis, and also the case of uniformly polarized vortex(UPV)beams with left-handed elliptical polarization. In the input plane, the NUPV beams present their spiral spectra of m-mode concentrated at m = l ± 1 modes rather than m = l mode, and reveal the relation among topological charge l, mode of spiral spectra m and the power weight value Rmexpressed by l=∑^(∞)_(m)=-∞Rm. is still satisfied for UPV beams in uniaxially anisotropic crystals, whereas for NUPV beams their relations are no longer valid owing to non-uniform polarization. Furthermore, the analysis indicates that the asymmetrical distribution of power weight of spiral spectra and the non-zero value in the sum of longitudinal OAM densities originate from the initial non-uniform polarization and anisotropy in uniaxial crystals rather than topological charges. In addition, the relation between spiral spectrum and longitudinal OAM density is numerically discussed. This work may provide an avenue for OAM-based communications,optical metrology, and imaging by varying the initial non-uniform polarization. 展开更多
关键词 non-uniformly polarized beams spiral spectrum spin angular momentum orbital angular momentum VORTEX
下载PDF
Laser shaping and optical power limiting of pulsed Laguerre–Gaussian laser beams of high-order radial modes in fullerene C60 被引量:1
18
作者 李杰 管文慧 +3 位作者 袁烁 赵亚男 孙玉萍 刘纪彩 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期273-280,共8页
We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is ... We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre–Gaussian laser beam is strongly reshaped during its propagation in the C60molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a noncentrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre–Gaussian laser beams before the takeover of the saturation effect;the lower the order of the Laguerre–Gaussian beam, the lower the energy transmittance. 展开更多
关键词 pulsed Laguerre–Gaussian laser beams high-order radial mode optical power limiting reverse saturable absorption
下载PDF
Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model 被引量:1
19
作者 Pei ZHANG P.SCHIAVONE Hai QING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2071-2092,共22页
We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law ... We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented. 展开更多
关键词 nonlocal strain gradient integral model dynamic stability porous functionally graded(PFG)shear deformation beam size-dependent hygro-thermal load generalized differential quadrature method(GDQM)
下载PDF
A two-parameter multiple shooting method and its application to the natural vibrations of non-prismatic multi-segment beams
20
作者 R.HOŁUBOWSKI K.JARCZEWSKA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2243-2252,共10页
This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Ber... This paper presents an enhanced version of the standard shooting method that enables problems with two unknown parameters to be solved.A novel approach is applied to the analysis of the natural vibrations of Euler-Bernoulli beams.The proposed algorithm,named as two-parameter multiple shooting method,is a new powerful numerical tool for calculating the natural frequencies and modes of multi-segment prismatic and non-prismatic beams with different boundary conditions.The impact of the axial force and additional point masses is also taken into account.Due to the fact that the method is based directly on the fourth-order ordinary differential equation,the structures do not have to be divided into many small elements to obtain an accurate enough solution,even though the geometry is very complex.To verify the proposed method,three different examples are considered,i.e.,a three-segment non-prismatic beam,a prismatic column subject to non-uniformly distributed compressive loads,and a two-segment beam with an additional point mass.Numerical analyses are carried out with the software MATHEMATICA.The results are compared with the solutions computed by the commercial finite element program SOFiSTiK.Good agreement is achieved,which confirms the correctness and high effectiveness of the formulated algorithm. 展开更多
关键词 two-parameter multiple shooting method two-point boundary value problem natural vibration non-prismatic beam multi-segment beam
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部