In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale p...In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale prestressed concrete slabs is further investigated through parameter expansion.The influences on fire resistance ratings controlled by deflection are explored and discussed,including effective span,concrete cover thickness,load level,prestress degree,effective prestress,composite reinforcement index and other factors.The calculated results indicate that fire resistance ratings of large-scale bonded prestressed concrete simply supported slabs are bigger than those of small-scale ones.Finally,the calculation formulas of fire resistance ratings controlled by deflection are established,which rationally consider the influence of effective span,concrete cover thickness,load level,composite reinforcement index and so on key factors.展开更多
Based on the Duhamel integral, a couple of analytical solutions are derived to predict the strain rates of concrete and steel reinforcement in reinforced concrete slabs under blast loads and to estimate their variatio...Based on the Duhamel integral, a couple of analytical solutions are derived to predict the strain rates of concrete and steel reinforcement in reinforced concrete slabs under blast loads and to estimate their variation over depth of a cross-section along the entire length of the member. The analytical approach utilizes the single-degree-of-freedom mode for the analysis of reinforced concrete simply supported one-way panels subjected to blast loads. These analytical solutions can give the strain rate profile for any cross-section at any time and permit variations of strain rate in each time step of numerical iteration method, thus making it possible to directly incorporate strain rate effects into non-linear dynamic response analysis of structural members subjected to blast loads.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.50678050)
文摘In order to validate the accuracy of nonlinear fire simulation programs,comparison analysis is carried out between simulation and experiment induced from small-scale specimens,and then fire resistance of large-scale prestressed concrete slabs is further investigated through parameter expansion.The influences on fire resistance ratings controlled by deflection are explored and discussed,including effective span,concrete cover thickness,load level,prestress degree,effective prestress,composite reinforcement index and other factors.The calculated results indicate that fire resistance ratings of large-scale bonded prestressed concrete simply supported slabs are bigger than those of small-scale ones.Finally,the calculation formulas of fire resistance ratings controlled by deflection are established,which rationally consider the influence of effective span,concrete cover thickness,load level,composite reinforcement index and so on key factors.
文摘Based on the Duhamel integral, a couple of analytical solutions are derived to predict the strain rates of concrete and steel reinforcement in reinforced concrete slabs under blast loads and to estimate their variation over depth of a cross-section along the entire length of the member. The analytical approach utilizes the single-degree-of-freedom mode for the analysis of reinforced concrete simply supported one-way panels subjected to blast loads. These analytical solutions can give the strain rate profile for any cross-section at any time and permit variations of strain rate in each time step of numerical iteration method, thus making it possible to directly incorporate strain rate effects into non-linear dynamic response analysis of structural members subjected to blast loads.