期刊文献+
共找到352篇文章
< 1 2 18 >
每页显示 20 50 100
A hybrid genetic-simulated annealing algorithm for optimization of hydraulic manifold blocks 被引量:7
1
作者 刘万辉 田树军 +1 位作者 贾春强 曹宇宁 《Journal of Shanghai University(English Edition)》 CAS 2008年第3期261-267,共7页
This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation o... This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality. 展开更多
关键词 hydraulic manifold blocks (HMB) genetic algorithm (GA) simulated annealing sa optimal design
下载PDF
CNOP-P-based parameter sensitivity for double-gyre variation in ROMS with simulated annealing algorithm 被引量:3
2
作者 YUAN Shijin ZHANG Huazhen +1 位作者 LI Mi MU Bin 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2019年第3期957-967,共11页
Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonl... Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis. 展开更多
关键词 parameter sensitivity DOUBLE GYRE Regional Ocean Modeling System(ROMS) CONDITIONAL Nonlinear Optimal Perturbation(CNOP-P) simulated annealing(sa)algorithm
下载PDF
Simulated annealing spectral clustering algorithm for image segmentation 被引量:3
3
作者 Yifang Yang Yuping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期514-522,共9页
The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance m... The similarity measure is crucial to the performance of spectral clustering. The Gaussian kernel function based on the Euclidean distance is usual y adopted as the similarity measure. However, the Euclidean distance measure cannot ful y reveal the complex distribution data, and the result of spectral clustering is very sensitive to the scaling parameter. To solve these problems, a new manifold distance measure and a novel simulated anneal-ing spectral clustering (SASC) algorithm based on the manifold distance measure are proposed. The simulated annealing based on genetic algorithm (SAGA), characterized by its rapid convergence to the global optimum, is used to cluster the sample points in the spectral mapping space. The proposed algorithm can not only reflect local and global consistency better, but also reduce the sensitivity of spectral clustering to the kernel parameter, which improves the algorithm’s clustering performance. To efficiently apply the algorithm to image segmentation, the Nystrom method is used to reduce the computation complexity. Experimental results show that compared with traditional clustering algorithms and those popular spectral clustering algorithms, the proposed algorithm can achieve better clustering performances on several synthetic datasets, texture images and real images. 展开更多
关键词 spectral clustering (SC) simulated annealing sa image segmentation Nystr6m method.
下载PDF
FPGA PLACEMENT OPTIMIZATION BY TWO-STEP UNIFIED GENETIC ALGORITHM AND SIMULATED ANNEALING ALGORITHM 被引量:6
4
作者 Yang Meng A.E.A. Almaini Wang Pengjun 《Journal of Electronics(China)》 2006年第4期632-636,共5页
Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it... Genetic Algorithm (GA) is a biologically inspired technique and widely used to solve numerous combinational optimization problems. It works on a population of individuals, not just one single solution. As a result, it avoids converging to the local optimum. However, it takes too much CPU time in the late process of GA. On the other hand, in the late process Simulated Annealing (SA) converges faster than GA but it is easily trapped to local optimum. In this letter, a useful method that unifies GA and SA is introduced, which utilizes the advantage of the global search ability of GA and fast convergence of SA. The experimental results show that the proposed algorithm outperforms GA in terms of CPU time without degradation of performance. It also achieves highly comparable placement cost compared to the state-of-the-art results obtained by Versatile Place and Route (VPR) Tool. 展开更多
关键词 Genetic Algorithm (GA) simulated annealing sa PLACEMENT FPGA EDA
下载PDF
An Optimal Cooling Schedule Using a Simulated Annealing Based Approach 被引量:2
5
作者 Alex Kwaku Peprah Simon Kojo Appiah Samuel Kwame Amponsah 《Applied Mathematics》 2017年第8期1195-1210,共16页
Simulated annealing (SA) has been a very useful stochastic method for solving problems of multidimensional global optimization that ensures convergence to a global optimum. This paper proposes a variable cooling facto... Simulated annealing (SA) has been a very useful stochastic method for solving problems of multidimensional global optimization that ensures convergence to a global optimum. This paper proposes a variable cooling factor (VCF) model for simulated annealing schedule as a new cooling scheme to determine an optimal annealing algorithm called the Powell-simulated annealing (PSA) algorithm. The PSA algorithm is aimed at speeding up the annealing process and also finding the global minima of test functions of several variables without calculating their derivatives. It has been applied and compared with the SA algorithm and Nelder and Mead Simplex (NMS) methods on Rosenbrock valleys in 2 dimensions and multiminima functions in 3, 4 and 8 dimensions. The PSA algorithm proves to be more reliable and always able to find the optimum or a point very close to it with minimal number of iterations and computational time. The VCF compares favourably with the Lundy and Mees, linear, exponential and geometric cooling schemes based on their relative cooling rates. The PSA algorithm has also been programmed to run on android smartphone systems (ASS) that facilitates the computation of combinatorial optimization problems. 展开更多
关键词 simulated annealing (sa) Variable Cooling Factor (VCF) Powell-simulated annealing (Psa) Global MINIMA Rosenrock Functions Android SMARTPHONE Systems (ASS)
下载PDF
Estimation of Mutual Coupling Coefficient of the Array by Simulated Annealing Algorithm 被引量:1
6
作者 GAO Huo-tao ZHENG Xia LI Yong-xu 《Wuhan University Journal of Natural Sciences》 CAS 2005年第6期1000-1004,共5页
We propose a method for estimating the mutual coupling coefficient among antennas in this paper which is based on the principle of signal subspace and the simulated annealing (SA) algorithm. The computer simulation ... We propose a method for estimating the mutual coupling coefficient among antennas in this paper which is based on the principle of signal subspace and the simulated annealing (SA) algorithm. The computer simulation has been conducted to illustrate the' excellent performance of this method and to demonstrate that it is statistically efficient. The benefit of this new method is that calibration signals and unknown signals can be received simultaneously, during the course of calibration. 展开更多
关键词 mutual coupling coefficient from array estimation of mutual coupling coefficient simulated annealingsa algorithm
下载PDF
基于GRA-GASA-SVM的煤层瓦斯含量预测方法研究 被引量:3
7
作者 田水承 任治鹏 马磊 《煤炭技术》 CAS 2024年第1期114-118,共5页
为提升煤层瓦斯含量预测精度,提出一种采用遗传模拟退火算法混合优化支持向量机(SVM)参数的瓦斯含量预测模型(GRA-GASA-SVM模型)。该模型将GA和SA整合为遗传模拟退火算法协同优化SVM的参数,以解决传统网格寻优算法取值范围无法确定和单... 为提升煤层瓦斯含量预测精度,提出一种采用遗传模拟退火算法混合优化支持向量机(SVM)参数的瓦斯含量预测模型(GRA-GASA-SVM模型)。该模型将GA和SA整合为遗传模拟退火算法协同优化SVM的参数,以解决传统网格寻优算法取值范围无法确定和单一智能算法优化程度有限等问题。利用灰色关联分析(GRA)压缩数据集维度,建立瓦斯含量预测参数体系并作为GASA-SVM的输入数据集。结果表明:SVM模型、GA-SVM模型和GASA-SVM模型10折交叉验证瓦斯含量预测总平均相对误差分别为15.98%、13.55%和10.58%。相比SVM模型和GA-SVM模型,GASA-SVM模型预测稳定性更优、预测精准度更高且对新样本泛化能力更强。 展开更多
关键词 遗传算法(GA) 模拟退火算法(sa) 支持向量机(SVM) 煤层瓦斯含量 灰色关联分析(GRA)
下载PDF
SIMULATED-ANNEALING-BASED SELECTION OF BINARY CODES
8
作者 李炳成 《Journal of Electronics(China)》 1991年第4期317-323,共7页
Binary code signals have been widely used in various radars due to their simpleimplementation,but the selection of the binary codes with high comporession ratio and lowsidelobes is not solved well,because of the diffi... Binary code signals have been widely used in various radars due to their simpleimplementation,but the selection of the binary codes with high comporession ratio and lowsidelobes is not solved well,because of the difficult processing in mathmatics and expensivecalculation cost.In this paper,neural computing is introduced into the field of the selection ofbinary codes and a new method based’on simulated annealing(SA)is proposed.The experimentsshow that the proposed method is able to select the optimal binary codes with much less timecost than the known methods,furhtermore the optimization selection of the binary codes versusthe calculation cost tradeoff is easier. 展开更多
关键词 BINARY CODES Selecting CODES SIDELOBES simulated annealing(sa)
下载PDF
Design of phase plates for shaping partially coherent beams by simulated annealing
9
作者 李建龙 吕百达 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1840-1844,共5页
Taking the Gaussian Schell-model beam as a typical example of partially coherent beams, this paper applies the simulated annealing (SA) algorithm to the design of phase plates for shaping partially coherent beams. A... Taking the Gaussian Schell-model beam as a typical example of partially coherent beams, this paper applies the simulated annealing (SA) algorithm to the design of phase plates for shaping partially coherent beams. A flow diagram is presented to illustrate the procedure of phase optimization by the SA algorithm. Numerical examples demonstrate the advantages of the SA algorithm in shaping partially coherent beams. An uniform flat-topped beam profile with maximum reconstruction error RE 〈 1.74% is achieved. A further extension of the approach is discussed. 展开更多
关键词 partially coherent beam phase plate simulated annealing sa). beam shading
下载PDF
An Adaptive Design for Six Sigma(ADFSS): a Simulated Annealing and Regression Analysis Embedded Approach
10
作者 李蓓智 吴珊珊 +1 位作者 杨建国 SHUKLA S K 《Journal of Donghua University(English Edition)》 EI CAS 2011年第5期491-498,共8页
Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into ... Design for six sigma (DFSS) is a powerful approach of designing products, processes, and services with the objective of meeting the needs of customers in a cost-effective maimer. DFSS activities are classified into four major phases viz. identify, design, optimize, and validate (IDOV). And an adaptive design for six sigma (ADFSS) incorporating the traits of artifidai intelligence and statistical techniques is presented. In the identify phase of the ADFSS, fuzzy relation measures between customer attributes (CAs) and engineering characteristics (ECs) as well as fuzzy correlation measures among ECs are determined with the aid of two fuzzy logic controllers (FLCs). These two measures are then used to establish the cumulative impact factor for ECs. In the next phase ( i. e. design phase), a transfer function is developed with the aid of robust multiple nonlinear regression analysis. Furthermore, 1this transfer function is optimized with the simulated annealing ( SA ) algorithm in the optimize phase. In the validate phase, t-test is conducted for the validation of the design resulted in earlier phase. Finally, a case study of a hypothetical writing instrument is simulated to test the efficacy of the proposed ADFSS. 展开更多
关键词 design for six sigma (DFSS) fuzzy logic eontroller( FLC) robust multiple nonlinear regression analysis simulated annealingsa
下载PDF
基于SA-BP神经网络的软件缺陷预测模型的研究 被引量:16
11
作者 尹然 丁晓明 +1 位作者 李小亮 梅莹 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第8期147-152,共6页
探讨了传统BP神经网络的模型与结构,并针对BP神经网络容易陷入局部最优的缺陷,提出用模拟退火技术代替局部梯度下降法修正网络权值的SA-BP算法,用于构建SA-BP神经网络的软件缺陷预测模型,并通过实验证明了SA-BP神经网络模型应用于软件... 探讨了传统BP神经网络的模型与结构,并针对BP神经网络容易陷入局部最优的缺陷,提出用模拟退火技术代替局部梯度下降法修正网络权值的SA-BP算法,用于构建SA-BP神经网络的软件缺陷预测模型,并通过实验证明了SA-BP神经网络模型应用于软件缺陷预测的有效性. 展开更多
关键词 sa-BP神经网络 软件缺陷预测模型 模拟退火
下载PDF
电网无功电压综合控制的改进SA算法 被引量:14
12
作者 周皓 周晖 《继电器》 CSCD 北大核心 2004年第1期24-27,共4页
简述了电网无功电压综合控制的必要性,根据电力系统实际运行情况及模拟退火(SA)算法自身的特点,就编码方式、状态产生函数、状态接收函数、初温、温度更新函数以及内、外循环终止准则等主要问题提出了改进SA算法。通过IEEE标准系统的仿... 简述了电网无功电压综合控制的必要性,根据电力系统实际运行情况及模拟退火(SA)算法自身的特点,就编码方式、状态产生函数、状态接收函数、初温、温度更新函数以及内、外循环终止准则等主要问题提出了改进SA算法。通过IEEE标准系统的仿真,说明改进SA算法具有搜索效率较高,原理及实现简单,速度快等优点。 展开更多
关键词 电网 电力系统 无功电压控制 综合控制 sa算法
下载PDF
基于SA-PSO的电力系统无功优化 被引量:6
13
作者 何佳 吴耀武 +1 位作者 娄素华 熊信艮 《电力系统及其自动化学报》 CSCD 北大核心 2007年第5期114-118,共5页
粒子群优化算法是一种简便易行,收敛快速的演化计算方法。但该算法也存在收敛精度不高,易陷入局部极值的缺点。针对这些缺点,对原算法加以改进,引入了自适应的惯性系数和模拟退火算法的思想,提出了一种新的模拟退火粒子群优化(simulated... 粒子群优化算法是一种简便易行,收敛快速的演化计算方法。但该算法也存在收敛精度不高,易陷入局部极值的缺点。针对这些缺点,对原算法加以改进,引入了自适应的惯性系数和模拟退火算法的思想,提出了一种新的模拟退火粒子群优化(simulated annealing particle swarm optimization,SA-PSO)算法,并将其应用于电力系统无功优化。对IEEE14节点系统进行了仿真计算,并与PSO算法作了比较,结果表明SA-PSO算法全局收敛性能及收敛精度均较PSO算法有了较大提高。 展开更多
关键词 电力系统 无功优化 模拟退火粒子群优化算法 自适应
下载PDF
集成GASA混合学习策略的BP神经网络优化研究 被引量:3
14
作者 汪璇 谢德体 +1 位作者 吕家恪 武伟 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第7期168-171,共4页
针对BP算法易于陷入局部极小值且收敛速度慢的缺陷,在BP神经网络训练过程中集合GA并行化群体搜索的特点和SA在局部极小处发生概率突跳的特性.基于GASA混合学习策略对BP神经网络进行优化.优化后的BP神经网络被应用在农作物虫情预测中,实... 针对BP算法易于陷入局部极小值且收敛速度慢的缺陷,在BP神经网络训练过程中集合GA并行化群体搜索的特点和SA在局部极小处发生概率突跳的特性.基于GASA混合学习策略对BP神经网络进行优化.优化后的BP神经网络被应用在农作物虫情预测中,实验结果表明能够较大幅度提高网络学习的收敛性能和收敛速度,并一定程度上减少了算法的复杂性. 展开更多
关键词 遗传算法(GA) 模拟退火算法(sa) 混合学习策略 BP神经网络
下载PDF
改进SA-PSO在系统误差配准中的应用 被引量:2
15
作者 周林 潘泉 梁彦 《光电工程》 CAS CSCD 北大核心 2010年第9期27-31,38,共6页
针对融合系统中系统误差未固定的情况,将模拟退火算法SA(Simulated Annealing)引入到改进的粒子群优化算法PSO(Particle Swarm Optimization)中来解决系统误差配准问题。该方法结合了改进PSO的全面、快速寻优能力和SA的概率突跳特性,解... 针对融合系统中系统误差未固定的情况,将模拟退火算法SA(Simulated Annealing)引入到改进的粒子群优化算法PSO(Particle Swarm Optimization)中来解决系统误差配准问题。该方法结合了改进PSO的全面、快速寻优能力和SA的概率突跳特性,解决了PSO容易陷入局部最优的缺点,也保证了群体的多样性,避免了种群的退化。仿真结果表明,改进的SA-PSO方法较PSO、GA方法在系统误差配准精度上得到了提高。 展开更多
关键词 系统误差 误差配准 粒子群优化(PSO) 模拟退火(sa)
下载PDF
基于GASA的最小测试集求取的研究 被引量:1
16
作者 赵岩岭 刘春 +2 位作者 曹源 高翠云 陈胜军 《仪器仪表学报》 EI CAS CSCD 北大核心 2004年第z1期981-983,共3页
近年来发展的离散事件系统(DES)理论可提供一种统一的对数模混合电路中数字电路和模拟电路测试都有效的方法。对基于DES理论的可测试性研究中电路最小测试集的求取问题,提出了一种运用GASA混合策略的组合优化方法,并对进一步的研究工作... 近年来发展的离散事件系统(DES)理论可提供一种统一的对数模混合电路中数字电路和模拟电路测试都有效的方法。对基于DES理论的可测试性研究中电路最小测试集的求取问题,提出了一种运用GASA混合策略的组合优化方法,并对进一步的研究工作进行了展望。 展开更多
关键词 离散事件系统 最小测试集 遗传算法 模拟退火
下载PDF
基于灰色关联分析与SA-PSO-Elman结合的地震直接经济损失评估 被引量:3
17
作者 宗学军 李强 +2 位作者 杨忠君 何戡 Dimiter Velev 《安全与环境工程》 CAS 2016年第2期19-22,共4页
对地震灾害造成的损失进行评估是国家采取应急救援和灾后援建工作的重要依据。为快速评估地震灾害引起的直接经济损失,提出一种基于灰色关联分析与模拟退火-粒子群-Elman神经网络(SA-PSO-Elman)结合的地震灾害直接经济损失评估模型。该... 对地震灾害造成的损失进行评估是国家采取应急救援和灾后援建工作的重要依据。为快速评估地震灾害引起的直接经济损失,提出一种基于灰色关联分析与模拟退火-粒子群-Elman神经网络(SA-PSO-Elman)结合的地震灾害直接经济损失评估模型。该模型先采用灰色关联分析方法客观地选出地震灾害直接经济损失的主要影响因素,即为Elman神经网络的输入,然后将全局寻优能力强及收敛速度快的粒子群算法与能跳出局部极值的模拟退火算法相结合来优化Elman神经网络的权值和阀值,最后将训练好的Elman神经网络运用到地震灾害直接经济损失评估中。通过仿真试验结果表明:该混合算法优化的Elman神经网络模型比Elman神经网络模型和PSOElman神经网络模型具有更高的预测精度和收敛速度。 展开更多
关键词 地震灾害 直接经济损失评估 灰色关联分析 模拟退火算法 粒子群算法 ELMAN神经网络
下载PDF
一种基于GA-SA-TS算法的车间调度方法的研究 被引量:1
18
作者 刘红军 赵帅 赵雷 《制造技术与机床》 CSCD 北大核心 2012年第3期120-123,共4页
运用现代优化算法来解决车间调度这类NP完全问题是现在普遍使用的方法。本文将模拟退火算法和禁忌搜索算法的思想与遗传算法相结合,改善了传统遗传算法中单一的交叉和变异机制,提出了模拟退火-交叉机制和禁忌搜索-变异机制,最终形成了... 运用现代优化算法来解决车间调度这类NP完全问题是现在普遍使用的方法。本文将模拟退火算法和禁忌搜索算法的思想与遗传算法相结合,改善了传统遗传算法中单一的交叉和变异机制,提出了模拟退火-交叉机制和禁忌搜索-变异机制,最终形成了一种适用于解决车间调度方面问题的GA-SA-TS混合遗传算法。三种算法取长补短,避免了遗传算法局部搜索能力差和易早熟的缺点。同时运用GA-SA-TS算法,针对实际车间调度问题进行了仿真。通过该仿真结果可以看出,GA-SA-TS混合遗传算法对于解决车间调度问题是可行的,且在解的质量方面有所提高。 展开更多
关键词 混合遗传算法 GA-sa-TS算法 遗传算法 模拟退火算法 禁忌搜索算法 车间生产调度
下载PDF
基于PSO-SA算法的优化排料研究 被引量:3
19
作者 孙丽萍 李佳琪 +1 位作者 张希萌 何睿 《计算机应用与软件》 北大核心 2019年第1期325-329,共5页
现今用于家具制造的木材及板材的使用量大幅度增加。板材用料的合理利用与木材资源的浪费问题,越来越受到国家及社会的高度关注。在家具生产中,板式材料的合理剪裁成为现在的研究热点。根据现代社会产生的木材合理利用为研究点采用PSO-S... 现今用于家具制造的木材及板材的使用量大幅度增加。板材用料的合理利用与木材资源的浪费问题,越来越受到国家及社会的高度关注。在家具生产中,板式材料的合理剪裁成为现在的研究热点。根据现代社会产生的木材合理利用为研究点采用PSO-SA优化算法,对板式办公家具木质材料的优化排料方式进行建模。PSO-SA将PSO算法的优点与SA算法的优点运用在算法的实现中,并将两种算法进行有效结合,使之达到最良好的优化效果。尽量避免和减少其余料的产生和浪费,达到利用率最高的目的。同时提高辅助材料的价值和可用性。 展开更多
关键词 模拟退火算法 粒子群优化算法 混合粒子群退火算法
下载PDF
一种混合GA、SA和启发式规则的FMS调度方法 被引量:1
20
作者 李岩 吴智铭 《上海交通大学学报》 EI CAS CSCD 北大核心 1999年第11期1329-1332,共4页
描述了一种综合GA、SA 与启发式规则优点的方法,及其在FMS调度问题中的解决方案和FMS调度的特点,建立了可变工艺路径的FMS调度问题的模型.对GA、SA 操作中各步骤及其相应于FMS调度的特殊性作了说明,提出了基于... 描述了一种综合GA、SA 与启发式规则优点的方法,及其在FMS调度问题中的解决方案和FMS调度的特点,建立了可变工艺路径的FMS调度问题的模型.对GA、SA 操作中各步骤及其相应于FMS调度的特殊性作了说明,提出了基于启发式规则库的SA 算法,阐述了柔性调度的基本框架,并对一个33 机器、127 展开更多
关键词 遗传算法 模拟退火法 FMS 调度 启发式规则库
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部