To reveal the complicated mechanism of the multicomponent mass transfer during the growth of ternary compound semiconductors, a numerical model based on Maxwell-Stefan equations was developed to simulate the Bridgman ...To reveal the complicated mechanism of the multicomponent mass transfer during the growth of ternary compound semiconductors, a numerical model based on Maxwell-Stefan equations was developed to simulate the Bridgman growth of CdZnTe crystal. The Maxwell-Stefan diffusion coefficients in the melt were estimated. Distributions of Zn, Cd, and Te were calculated with variable ampoule traveling rate and diffusion coefficients. The experimental results show that Zn in melt near the growth interface decreases and diffuses from the bulk melt to the growth interface. For Cd, the situation is just the opposite. The coupling effects of Zn and Cd diffusions result in an uphill diffusion of Te at the beginning of the growth. Throughout the growth, the concentration of Te in the melt keeps low near the growth interface but high far from the growth interface. Increasing the ampoule traveling rate will aggravate the segregation of Zn and Cd, and hence deteriorate the uniformity of Te. We also find that not only the diffusion coefficients but also the ratios between them have significant influence on the species diffusions.展开更多
基金Funded by the National Key R&D Program of China(2016YFB0402405,2016YFF0101301)the Special Fund of National Key Scientific Instruments and Equipments Development(2011YQ040082)+4 种基金the National 973 Project of China(2011CB610400)the 111 Project of China(B08040)the National Natural Science Foundation of China(NNSFC-61274081,51372205,and 51502244)the Fundamental Research Funds for the Central Universities(3102015BJ(II)ZS014,G2016KY0104,3102016ZY011)the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘To reveal the complicated mechanism of the multicomponent mass transfer during the growth of ternary compound semiconductors, a numerical model based on Maxwell-Stefan equations was developed to simulate the Bridgman growth of CdZnTe crystal. The Maxwell-Stefan diffusion coefficients in the melt were estimated. Distributions of Zn, Cd, and Te were calculated with variable ampoule traveling rate and diffusion coefficients. The experimental results show that Zn in melt near the growth interface decreases and diffuses from the bulk melt to the growth interface. For Cd, the situation is just the opposite. The coupling effects of Zn and Cd diffusions result in an uphill diffusion of Te at the beginning of the growth. Throughout the growth, the concentration of Te in the melt keeps low near the growth interface but high far from the growth interface. Increasing the ampoule traveling rate will aggravate the segregation of Zn and Cd, and hence deteriorate the uniformity of Te. We also find that not only the diffusion coefficients but also the ratios between them have significant influence on the species diffusions.