期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Experimental research on overlying strata movement and fracture evolution in pillarless stress-relief mining 被引量:22
1
作者 Junhua Xue Hanpeng Wang +3 位作者 Wei Zhou Bo Ren Changrui Duan Dongsheng Deng 《International Journal of Coal Science & Technology》 EI 2015年第1期38-45,共8页
In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the ... In multiple seams mining, the seam with relatively low gas content (protective seam) is often extracted prior to mining its overlying and/or underlying seams of high gas content and low permeability to minimize the risk of high gas emission and outbursts of coal and gas. A key to success with this mining sequence is to gain a detailed understanding of the movement and fracture evolution of the overlying and underlying strata after the protective seam in extracted. In Zhuji mine, the No. 11-2 seam is extracted as a protective seam with the pillarless mining method by retaining goal-side roadways prior to its overlying No. 13-1 seam. An investigation has been undertaken in the panel 1111 (1) of Zhuji mine to physically simulate the movement and fracture evolution of the overlying strata alter the No. 1 I-2 seam is extracted. In the physical simulation, the displacement, strain, and deformation and failure process of the model for simulation were acquired with various means such as grating displacement meter, strain gauges, and digital photography. The simulation result shows that: (1) Initial caving interval of the immediate roof was 21.6 m, the first weighting interval was 23.5-37.3 m with the average interval of 33.5 m, and the periodic weighting interval of the main roof was in a range of 8.2-20.55 m and averaged at 15.2 m. (2) The maximum height of the caving zone after the extraction of No. 11-2 seam was 8.0 m, which was 4 times of the seam mining height and the internal strata of the caving zone collapsed irregularly. The mining-induced fractures developed 8-30 m above the mined No. 11-2 seam, which was 7.525 times of the seam mining height, the fracture zone was about 65° upward from the seam open-off cut toward the goaf, the height of longitudinal joint growth was 4-20 times of the mining seam height, and the height of lateral joint growth was 20-25 times of the mining seam height. (3) The "arch-in-arch" mechanical structure of the internal goaf was bounded by an expansion angle of broken strata in the lateral direction of the retained goaf-side roadway. The spatial and temporal evolution regularities of over- burden's displacement field and stress field, dynamic development process and distribution of fracture field were analyzed. Based on the simulation results, it is recommended that several goaf drainage methods, i.e. gas drainage with buried pipes in goaf, surface goaf gas drainage, and cross-measure boreholes, should be implemented to ensure the safe mining of the panel 1111 (1). 展开更多
关键词 Low-permeability coal seam Pillarless stress-relief mining Overburden movement Fracture evolution Physical simulation
下载PDF
Irradiation-induced void evolution in iron:A phase-field approach with atomistic derived parameters 被引量:1
2
作者 Yuan-Yuan Wang Jian-Hua Ding +5 位作者 Wen-Bo Liu Shao-Song Huang Xiao-Qin Ke Yun-Zhi Wang Chi Zhang Ji-Jun Zhao 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期363-369,共7页
A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation do... A series of material parameters are derived from atomistic simulations and implemented into a phase field(PF) model to simulate void evolution in body-centered cubic(bcc) iron subjected to different irradiation doses at different temperatures.The simulation results show good agreement with experimental observations — the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial. 展开更多
关键词 phase field method atomistic simulation void evolution irradiation
下载PDF
Evolution simulation of lightning discharge based on a magnetohydrodynamics method
3
作者 Fusheng WANG Xiangteng MA +1 位作者 Han CHEN Yao ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第7期86-97,共12页
In order to solve the load problem for aircraft lightning strikes, lightning channel evolution is simulated under the key physical parameters for aircraft lightning current component C. A numerical model of the discha... In order to solve the load problem for aircraft lightning strikes, lightning channel evolution is simulated under the key physical parameters for aircraft lightning current component C. A numerical model of the discharge channel is established, based on magnetohydrodynamics (MHD) and performed by FLUENT software. With the aid of user-defined functions and a user- defined scalar, the Lorentz force, Joule heating and material parameters of an air thermal plasma are added. A three-dimensional lightning arc channel is simulated and the arc evolution in space is obtained. The results show that the temperature distribution of the lightning channel is symmetrical and that the hottest region occurs at the center of the lightning channel. The distributions of potential and current density are obtained, showing that the difference in electric potential or energy between two points tends to make the arc channel develop downwards. The arc channel comes into expansion on the anode surface due to stagnation of the thermal plasma and there exists impingement on the copper plate when the arc channel comes into contact with the anode plate. 展开更多
关键词 lightning channel thermal plasma Magneto Hydro Dynamics (MHD) evolution simulation
下载PDF
Computer Simulating Calculation on the Microstructure Evolutions during Hot Strip Rolling of C-Mn Steels
4
作者 Zhenyu LIU Guodong WANG and Qiaing ZHANG(Northeastern University, Shenyang, 110006, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第3期221-224,共4页
The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were ana... The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were analysed in detail. showing not only a good agreement of prediction with the measured values, but also entirely possibility to optimize hot strip rolling precess by computer simulation 展开更多
关键词 MN Computer Simulating Calculation on the Microstructure evolutions during Hot Strip Rolling of C-Mn Steels FIGURE
下载PDF
Characteristics of temporal evolution of particle density and electron temperature in helicon discharge
5
作者 Xiong YANG Mousen CHENG +2 位作者 Dawei GUO Moge WANG Xiaokang LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第10期26-34,共9页
On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to stu... On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to study the characteristics of the temporal evolution of particle density and electron temperature. With the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters were directly solved in the whole computational domain. All of the partial differential equations were solved by the finite element solver in COMSOL Multiphysics^(TM) with a fully coupled method. In this work, the numerical cases were calculated with an Ar working medium and a Shoji-type antenna. The numerical results indicate that there exist two distinct modes of temporal evolution of the electron and ground atom density, which can be explained by the ion pumping effect. The evolution of the electron temperature is controlled by two schemes: electromagnetic wave heating and particle collision cooling. The high RF power results in a high peak electron temperature while the high gas pressure leads to a low steady temperature. In addition, an OES experiment using nine Ar I lines was conducted using a modified CR model to verify the validity of the results by simulation, showing that the trends of temporal evolution of electron density and temperature are well consistent with the numerically simulated ones. 展开更多
关键词 helicon discharge numerical simulation temporal evolution pumping effect
下载PDF
MARS:A General Multilayer Area Router 被引量:1
6
作者 马琪 严晓浪 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2001年第4期516-519,共4页
Based on a ripped-up and rerouted methodology,a multilayer area detailed router is presented by using simulated evolution technique.A modified maze algorithm is also performed for the single net.
关键词 multilayer area detailed router simulated evolution modified maze algorithm
下载PDF
Quantitative study on hydrocarbon expulsion mechanism based on micro-fracture 被引量:1
7
作者 Kaiming Su Jungang Lu +5 位作者 Huanxu Zhang Shijia Chen Yong Li Zhenglu Xiao Wen Qiu Meimei Han 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期1901-1913,共13页
The significance of source rocks for oil and gas accumulation has been indisputably acknowledged.Moreover,it has been gradually realized that there is difference between hydrocarbon generation capacity and hydrocarbon... The significance of source rocks for oil and gas accumulation has been indisputably acknowledged.Moreover,it has been gradually realized that there is difference between hydrocarbon generation capacity and hydrocarbon expulsion capacity,and this has prompted research on hydrocarbon expulsion efficiency.However,these studies dominantly highlight the results of hydrocarbon expulsion,and investigation into the corresponding process and mechanism is primarily from a macroscopic perspective.Despite its wide acceptance as the most direct hydrocarbon expulsion mode,hydrocarbon expulsion through micro-fractures is still not sufficiently understood.Therefore,this study obtains observations and performs experiments on two types of source rocks(mudstones and shales)of the Chang 7 oil group of the Yanchang Formation in Ordos Basin,China.Microscopy reveals that organic matter is non-uniformly distributed in both types of source rocks.Specifically,mudstones are characterized by a cluster-like organic matter distribution,whereas shales are characterized by a layered organic matter distribution.Thermal evolution simulation experiments demonstrate that the hydrocarbon generation process is accompanied by the emergence of micro-fractures,which are favorable for hydrocarbon expulsion.Moreover,based on the theories of rock physics and fracture mechanics,this study establishes micro-fracture development models for both types of source rocks,associated with the calculation of the fracture pressure that is needed for the initiation of fracture development.Furthermore,the relationship between the fluid pressure,fracture pressure,and micro-fracture expansion length during micro-fracture development is quantitatively explored,which helps identify the micro-fracture expansion length.The results indicate that the development of micro-fractures is commonly impacted by the morphology and distribution pattern of the organic matter as well as the mechanical properties of the source rocks.The micro-fractures in turn further affect the hydrocarbon expulsion capacity of the source rocks.The results of this study are expected to provide theoretical and practical guidance for the exploration and exploitation of tight oil and shale oil. 展开更多
关键词 Quantitative study Primary migration Hydrocarbon generation micro-fractures Mechanical analysis Thermal evolution simulation Ordos basin
下载PDF
Technology of back stoping from level floors in gateway and pillar mining areas of extra-thick seams 被引量:2
8
作者 Tu Hongsheng Tu Shihao +2 位作者 Zhang Xiaogang Li Zhaoxin Jia Shuai 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期143-149,共7页
According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical s... According to the special requirements of secondary mining of resources in gateway-and-pillar goal in extra-thick seams of Shanxi, this paper presents a technical proposal of back stoping from level floors. Numerical simulation and theoretical analysis are ccsed to investigate the compaction characteristics of cavities under stress as well as an appropriate mining height of the primary-mining layer based on dif- ferent mining widths and pillar widths. For Yangjian coal mine, the mining thickness of the first seam during back stoping from level floor is determined to be 3 m, which meets the relevant requirements. Gateway-and-pillar goaf of a single layer has a range of influence of 9 m vertically. If gateway-and-pillar goaf occurs both in 9-1 and 9-5 layers, the range is extended to within 11.2 m. When the mining width of a gateway is less than 2 m or larger than 5 m, the gateway-and-pillar goal in the upper layer of the primary-mining seam can be filled in and compacted after stoping. When the working face is 2 m away from the gateway and pillar before entering into it and after passing through it, the coal body under the gateway and pillar is subjected to relatively high stress. During mining of the upper layer, moreover, the working face should interlock the goaf in primary-mining layer for 20 m. 展开更多
关键词 Gateway-and-pillar goaf Back stoping from level floor Secondary mining Numerical simulation Stress evolution
下载PDF
Prediction of rock-burst-threatened areas in an island coal face and its prevention:A case study 被引量:2
9
作者 Li Xuehua Pan Fan +3 位作者 Li Huaizhen Zhao Min Ding Lingxiao Zhang Wenxi 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第6期1125-1133,共9页
The island coal face arises in coal mines with the purpose of preventing gas explosion or maintaining the balance between mining and tunneling. However, its particular stress conditions in the surrounding rock may inc... The island coal face arises in coal mines with the purpose of preventing gas explosion or maintaining the balance between mining and tunneling. However, its particular stress conditions in the surrounding rock may increase the difficulty of stress control in the coal face and in its mining roadways, especially when the coal seam, the roof, and the floor have rock-burst propensities, The high energy accumulated in the island coal face and in its roof and floor will intensify rock-burst propensity or even induce rock burst, which further result in great casualties and financial losses. Taking island coal face 2321 in Jinqiao coal mine as a case, we propose a method for the prediction of rock-burst-threatened areas in an island coal face with weak rock-burst propensity. Based on the anaHysis of the movement of the overlying roof and characteristics of stress distribution, this method combined numerical simulation with drilling bits to ensure the prediction accuracy. The effects of coal pillars with different widths on the mitigation of stress concentration in the coal face and on the prevention of rock burst are analyzed together with the mech- anism behind. Finally, corresponding measures against the rock burst in the island coal face are proposed. 展开更多
关键词 Island coal face Rock burst Stress evolution Numerical simulation Stress relief technology
下载PDF
An unconventional phase field modeling of domains formation and evolution in tetragonal ferroelectrics 被引量:3
10
作者 ZHOU YouGang PENG JinLin +1 位作者 PAN Kai LIU YunYa 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第7期1059-1064,共6页
Based on characteristic functions of variants, we developed an unconventional phase field modeling for investigating domains formation and evolution in tetragonal ferroelectrics. In order to develop this computational... Based on characteristic functions of variants, we developed an unconventional phase field modeling for investigating domains formation and evolution in tetragonal ferroelectrics. In order to develop this computational approach, we constructed the anisotropy energy of tetragonal variants, which is used instead of Landau-Devonshire potential in the conventional phase field method, resulting in that much fewer parameters are needed for simulations. This approach is advantageous in simulations of emerging ferroelectric materials. We employ it to study the formation and evolution of domains in tetragonal barium titanate single crystal, as well as the nonlinear behaviors under cyclical stress and electric field loading. A multi-rank laminated ferroelectric domain pattern, 90° domain switching accompanied by polarization rotation, and 180° domain switching accompanied by move of domain wall are predicted. It is found that the speed of 90° domain switching is slower than that of 180° domain switching, due to both polarization and transformation strain changed in 90° domain switching. It also suggests that large strain actuation can be generated in single crystal ferroelectrics via combined electromechanical loading inducing 90° domain switching. The good agreement between simulation results and experimental measurements is observed. 展开更多
关键词 phase field simulation ferroelectric domains formation and evolution ferroelectric materials
原文传递
Effects of Strain Rate,Temperature and Grain Size on the Mechanical Properties and Microstructure Evolutions of Polycrystalline Nickel Nanowires:A Molecular Dynamics Simulation
11
作者 RUAN Zhigang WU Wenping LI Nanlin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第3期251-258,共8页
Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to... Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to 2 ns–1 affected the Young's modulus of nickel nanowires slightly, whereas the yield stress increased. The Young's modulus decreased approximately linearly; however, the yield stress firstly increased and subsequently dropped as the temperature increased. The Young's modulus and yield stress increased as the mean grain size increased from 2.66 to 6.72 nm. Moreover, certain efforts have been made in the microstructure evolution with mechanical properties association under uniaxial tension. Certain phenomena such as the formation of twin structures, which were found in nanowires with larger grain size at higher strain rate and lower temperature, as well as the movement of grain boundaries and dislocation, were detected and discussed in detail. The results demonstrated that the plastic deformation was mainly accommodated by the motion of grain boundaries for smaller grain size. However, for larger grain size, the formations of stacking faults and twins were the main mechanisms of plastic deformation in the polycrystalline nickel nanowire. 展开更多
关键词 Effects of Strain Rate Temperature and Grain Size on the Mechanical Properties and Microstructure evolutions of Polycrystalline Nickel Nanowires A Molecular Dynamics Simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部