Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relativ...Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.展开更多
Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape not...Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.展开更多
There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vorte...There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.展开更多
A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure f...A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.展开更多
The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carr...The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.展开更多
The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological ...The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological data of January and July.Simulation results indicate that the local weather characteristics over the Hainan Island are distinctly influenced by theWuzhi Mountain terrain. The cloudy or rainfall weather over the northeast of the Wuzhi Mountain occurs easily, under proper large-scale conditions of flow, temperature and humidity. while west wind prevails. The overcast or rainfall weather is often induced by strong convection in the afternoon over west of the Hainan Island under easterly prevailing wind.展开更多
The effect of flow control devices(FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simu...The effect of flow control devices(FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simulation of a 1:1 geometric model.The variation coefficient(CV) was defined to evaluate the flow uniformity of the seven-strand tundish.An optimized FCD configuration was proposed on the basis of the evaluation of experimental results.It is concluded that a turbulence inhibitor(TI) and U-type dam are essential to improve the uniformity of fluid flow in the seven-strand tundish.In addition,the configuration of inclination T-type dams with a height of 200 mm between the second and third strands and with a height of 300 mm between the third and fourth strands can minimize the proportion of dead zone.After optimizing the configuration of FCDs,the variation coefficient reduces below 20%of the mean value,and the average proportion of dead zone is just 14.6%;in addition,the temperature fluctuation between the strands could be controlled within 0.6 K.In summary,the uniformity of flow and temperature in the seven-strand tundish is greatly improved.展开更多
The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic proper...The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.展开更多
Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerical...Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.展开更多
Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-...Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-corrected term expressed as the combination of flow velocity and the change rate of the tidal fevel was developed to represent tidal effects in the SVN model. A momentum equation incorporating with the corrected term was derived based on Newton's second law. By combing the modified momentum equation with the continuity equation, an improved SVN model for tidal rivers (the ISVN model) was constructed. The simulation of a tidal reach of the Qiantang River shows that the ISVN model performs better than the SVN model. It indicates that the corrected force derived for tidal effects is reasonable; the ISVN model provides an appropriate enhancement of the SVN model for flow simulation of tidal rivers.展开更多
A flexible flat torque converter was proposed to fulfill the requirement of miniaturization and power density maximization for automobiles.Constructed by two arcs joined by lines,the torus was designed directly from d...A flexible flat torque converter was proposed to fulfill the requirement of miniaturization and power density maximization for automobiles.Constructed by two arcs joined by lines,the torus was designed directly from design path.The influence of flatness on the performance of the torque converter was evaluated.The software CFX and standard k-ε model were adopted to simulate the internal flow fields of the torque converter under different flatness ratios.The results indicated that the performance of the torque converter got worse as the flatness declined,but the capacity of pump increased.The efficiency and the torque ratio dropped slightly as the flatness ratio decreased.So the torque converter could be squashed appropriately to get high power density without too much efficiency sacrifice.But when the flatness ratio was below 0.2,there was a significant drop in the efficiency.展开更多
Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the paramete...Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.展开更多
The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flo...The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations.Thus,this paper proposes a multi-source data fusion method.First,we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications.The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering.Then,the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation.Finally,we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene.The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format)to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed.Additionally,the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization.In summary,the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process.展开更多
A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck ...A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.展开更多
Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster managem...Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster management perspective.This study presents a numerical model called debris flow simulation 2D(DFS 2D)and applicability of the proposed model is investigated through the values of the model parameters used for the reproduction of an occurred debris flow at Yindongzi gully in China on 13 August 2010.The model can be used to simulate debris flows using three different rheologies and has a userfriendly interface for providing the inputs.Using DFS 2D,flow parameters can be estimated with respect to space and time.The values of the flow resistance parameters of model,dry-Coulomb and turbulent friction,were calibrated through the back analysis and the values obtained are 0.1 and 1000 m/s^(2),respectively.Two new methods of calibration are proposed in this study,considering the crosssectional area of flow and topographical changes induced by the debris flow.The proposed methods of calibration provide an effective solution to the cumulative errors induced by coarse-resolution digital elevation models(DEMs)in numerical modelling of debris flows.The statistical indices such as Willmott's index of agreement,mean-absolute-error,and normalized-root-mean-square-error of the calibrated model are 0.5,1.02 and 1.44,respectively.The comparison between simulated and observed values of topographic changes indicates that DFS 2D provides satisfactory results and can be used for dynamic modelling of debris flows.展开更多
Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combus...Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures.展开更多
The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,igno...The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,ignoring the influence of multiple motion units and the differences in various features among them,which strongly affect the efficiency and accuracy of the simulations.In this study,we constructed a flow field fusion simulation method based on model features by combining key motion unit analysis and various simulation methods and then applied the method to the CRDM simulation process.CRDM performs motion unit decomposition through the structural hierarchy of function-movement-action method,and the key meta-actions are identified as the nodes in the flow field simulation.We established a fused feature-based multimethod simulation process and processed the simulation methods and data according to the features of the fluid domain space and the structural complexity to obtain the fusion simulation results.Compared to traditional simulation methods and real measurements,the simulation method provides advantages in terms of simulation efficiency and accuracy.展开更多
基金the National Natural Science Foundation of China (No.50576088), the Natural Science Foundation of Zhejiang Province (No.R503170) and the Doctoral Program Foundation of Ministry of Education (No.20030335009).
文摘Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.
基金Project(51004085)supported by the National Natural Science Foundation of China
文摘Precise function expression of the flow area for the sloping U-shape notch orifice versus the spool stroke was derived. The computational fluid dynamics was used to analyze the flow features of the sloping U-shape notch on the spool, such as mass flow rates, flow coefficients, effiux angles and steady state flow forces under different operating conditions. At last, the reliability of the mathematical model of the flow area for the sloping U-shape notch orifice on the spool was demonstrated by the comparison between the orifice area curve derived and the corresponding experimental data provided by the test. It is presented that the bottom arc of sloping U-shape notch (ABU) should not be omitted when it is required to accurately calculate the orifice area of ABU. Although the theoretical flow area of plain bottom sloping U-shape notch (PBU) is larger than that of ABU at the same opening, the simulated mass flow and experimental flow area of ABU are both larger than these of PBU at the same opening, while the simulated flow force of PBU is larger than that of ABU at the same opening. Therefore, it should be prior to adapt the ABU when designing the spool with proportional character.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(201908230358)supported by the China Scholarship CouncilProject supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘There is a relatively complex flow state inside the high speed on-off valve,which often produces low pressure area and oil reflux in the high-speed opening and closing process of the spool,causing cavitation and vortex and other phenomena.These phenomena will affect the stability of the internal flow field of the plate valve and the flow characteristics of the high speed on-off valve.Aiming at the problems of small flow rate and instability of internal flow field,a new spool structure was designed.The flow field models of two-hole and three-hole plate spools with different openings were established,and software ANSYS Workbench was chosen to mesh the model.The standard k−εturbulence model was selected for numerical simulation using FLUENT software.The pressure distribution and velocity distribution under the same pressure and different opening degree were obtained.The structure and parameters of the optimization model were also obtained.The stability analysis of flow field under different pressure was carried out.The results demonstrate that the three-hole spool has a similar flow field change with the two-hole spool,but it does not create a low pressure zone,and the three-hole spool can work stably at 2 MPa or less.This method improves the appearance of low pressure area and oil backflow in the process of high speed opening and closing of spool.The stability of flow field and the flow rate of high speed switch valve are improved.Finally,the products designed in this paper are compared with existing hydraulic valve products.The results show that the three-hole plate type high speed on-off valve designed in this paper maintains the stability of the internal flow field under the condition of 200 Hz and large opening degree,and realizes the increase of flow rate.
基金This project is supported by Provincial Natural Science Foundation of Jiangsu, China(No.BK2004406)Provincial Innovation Foundation for Graduate Students of Jiangsu, China(No.1223000053
文摘A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.
基金financially supported by the National Key Research and Development Plan(No.2018YFB0605601)the National Natural Science Foundation of China(No.41972168)。
文摘The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.
文摘The flow field over Hainan Island and the Leizhou Peninsula in summer and winter is discussed with three-dimensional mesoscale model developed in the University of Virginia and using the representative meteorological data of January and July.Simulation results indicate that the local weather characteristics over the Hainan Island are distinctly influenced by theWuzhi Mountain terrain. The cloudy or rainfall weather over the northeast of the Wuzhi Mountain occurs easily, under proper large-scale conditions of flow, temperature and humidity. while west wind prevails. The overcast or rainfall weather is often induced by strong convection in the afternoon over west of the Hainan Island under easterly prevailing wind.
基金supported by the National Natural Science Foundation of China (No.51404018)the Fundamental Research Funds for the Central Universities of China (No.FRF-TP-15-008A3)
文摘The effect of flow control devices(FCDs) on the uniformity of flow characteristics in a seven-strand symmetrical trapezoidal tundish was studied using both an experimental 1:2.5 hydraulic model and a numerical simulation of a 1:1 geometric model.The variation coefficient(CV) was defined to evaluate the flow uniformity of the seven-strand tundish.An optimized FCD configuration was proposed on the basis of the evaluation of experimental results.It is concluded that a turbulence inhibitor(TI) and U-type dam are essential to improve the uniformity of fluid flow in the seven-strand tundish.In addition,the configuration of inclination T-type dams with a height of 200 mm between the second and third strands and with a height of 300 mm between the third and fourth strands can minimize the proportion of dead zone.After optimizing the configuration of FCDs,the variation coefficient reduces below 20%of the mean value,and the average proportion of dead zone is just 14.6%;in addition,the temperature fluctuation between the strands could be controlled within 0.6 K.In summary,the uniformity of flow and temperature in the seven-strand tundish is greatly improved.
基金Supported by the National Natural Science Foundation of China under Grant No 11371069the Young Foundation of Institute of Applied Physics and Computational Mathematics under Grant No ZYSZ1518-13the Science Foundation of China Academy of Engineering Physics under Grant No 2013A0101004
文摘The uncertainty quantification of flows around a cylinder is studied by the non-intrusive polynomial chaos method. Based on the validation with benchmark results, discussions are mainly focused on the statistic properties of the peak lift and drag coefficients and base pressure drop over the cylinder with the uncertainties of viscosity coefficient and inflow boundary velocity. As for the numerical results of flows around a cylinder, influence of the inflow boundary velocity uncertainty is larger than that of viscosity. The results indeed demonstrate that a five-order degree of polynomial chaos expansion is enough to represent the solution of flow in this study.
基金funded by by the National Science Fund for Distinguished Young Scholars(Grant No.51425901)the National Natural Science Foundation of China(Grant Nos.51479053 and 51137002)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK2011026)the 111 Project(Grant No.B2012032)the Specialized Research Funding for the Doctoral Program of Higher Education(Grant No.20130094110014)the Marine Renewable Energy Research Project of State Oceanic Administration(Grant No.GHME2013GC03)the Fundamental Research Funds for the Central University(Hohai University,Grant Nos.2013B31614 and 2014B04114)
文摘Horizontal axis tidal turbines have attracted more and more attentions nowadays, because of their convenience and low expense in construction and high efficiency in extracting tidal energy. The present study numerically investigates the flow motion and performance of a horizontal axis tidal turbine with a supporting vertical cylinder under steady current. In the numerical model, the continuous equation and incompressible Reynolds-averaged Navier-Stokes equations are solved, and the volume of fluid method is employed to track free surface motion. The RNG k-ε model is adopted to calculate turbulence transport while the fractional area/volume obstacle representation method is used to describe turbine characteristics and movement. The effects of installation elevation of tidal turbine and inlet velocity on the water elevation, and current velocity, rotating speed and resultant force on turbine are discussed. Based on the comparison of the numerical results, a better understanding of flow structure around horizontal axis tidal turbine and turbine performance is achieved.
基金supported by the National Key Technologies R&D Program of China for the Eleventh Five-Year Plan Period (Grant No. 2008BAB29B08-02)the Program for the Ministry of Education and State Administration of Foreign Experts Affairs of China (Grant No. B08408)
文摘Flow in tidal rivers periodically propagates upstream or downstream under tidal influence. Hydrodynamic models based on the Saint-Venant equations (the SVN model) are extensively used to model tidal rivers. A force-corrected term expressed as the combination of flow velocity and the change rate of the tidal fevel was developed to represent tidal effects in the SVN model. A momentum equation incorporating with the corrected term was derived based on Newton's second law. By combing the modified momentum equation with the continuity equation, an improved SVN model for tidal rivers (the ISVN model) was constructed. The simulation of a tidal reach of the Qiantang River shows that the ISVN model performs better than the SVN model. It indicates that the corrected force derived for tidal effects is reasonable; the ISVN model provides an appropriate enhancement of the SVN model for flow simulation of tidal rivers.
基金Supported by the National Natural Science Foundation of China (50905016)
文摘A flexible flat torque converter was proposed to fulfill the requirement of miniaturization and power density maximization for automobiles.Constructed by two arcs joined by lines,the torus was designed directly from design path.The influence of flatness on the performance of the torque converter was evaluated.The software CFX and standard k-ε model were adopted to simulate the internal flow fields of the torque converter under different flatness ratios.The results indicated that the performance of the torque converter got worse as the flatness declined,but the capacity of pump increased.The efficiency and the torque ratio dropped slightly as the flatness ratio decreased.So the torque converter could be squashed appropriately to get high power density without too much efficiency sacrifice.But when the flatness ratio was below 0.2,there was a significant drop in the efficiency.
基金supported by the Chinese Jiangsu Provincial Natural Science Foundation (Grant No. BK2001017)
文摘Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.
基金support provided by the National Natural Sciences Foundation of China(No.41771419)Student Research Training Program of Southwest Jiaotong University(No.191510,No.182117)。
文摘The Digital Elevation Model(DEM)data of debris flow prevention engineering are the boundary of a debris flow prevention simulation,which provides accurate and reliable DEM data and is a key consideration in debris flow prevention simulations.Thus,this paper proposes a multi-source data fusion method.First,we constructed 3D models of debris flow prevention using virtual reality technology according to the relevant specifications.The 3D spatial data generated by 3D modeling were converted into DEM data for debris flow prevention engineering.Then,the accuracy and applicability of the DEM data were verified by the error analysis testing and fusion testing of the debris flow prevention simulation.Finally,we propose the Levels of Detail algorithm based on the quadtree structure to realize the visualization of a large-scale disaster prevention scene.The test results reveal that the data fusion method controlled the error rate of the DEM data of the debris flow prevention engineering within an allowable range and generated 3D volume data(obj format)to compensate for the deficiency of the DEM data whereby the 3D internal entity space is not expressed.Additionally,the levels of detailed method can dispatch the data of a large-scale debris flow hazard scene in real time to ensure a realistic 3D visualization.In summary,the proposed methods can be applied to the planning of debris flow prevention engineering and to the simulation of the debris flow prevention process.
基金financial support from the National Natural Science Foundation of China (No. 51204181)the Research Fund for the Doctoral Program of Higher Education of China (No. 20110095120004)+2 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities (Nos. 2011QNA10 and 2010QNB17)the China Postdoctoral Science Foundation (No. 20110491485)
文摘A mathematical study of particle flow on a banana screen deck using the discrete element method (DEM) was presented in this paper. The motion characteristics and penetrating mechanisms of particles on the screen deck were studied. Effects of geometric parameters of screen deck on banana screening process were also investigated. The results show that when the values of inclination of discharge and increment of screen deck inclination are 10° and 5° respectively, the banana screening process get a good screening performance in the simulation. The relationship between screen deck length and screening efficiency was further confirmed. The conclusion that the screening efficiency will not significantly increase when the deck length L≥430 mm (L/B ≥ 3.5) was obtained, which can provide theoretical basis for the optimization of banana screen.
基金financially supported by Department of Space,India(Grant No.ISRO/RES/4/663/18-19)。
文摘Debris flows are rapid mass movements with a mixture of rock,soil and water.High-intensity rainfall events have triggered multiple debris flows around the globe,making it an important concern from the disaster management perspective.This study presents a numerical model called debris flow simulation 2D(DFS 2D)and applicability of the proposed model is investigated through the values of the model parameters used for the reproduction of an occurred debris flow at Yindongzi gully in China on 13 August 2010.The model can be used to simulate debris flows using three different rheologies and has a userfriendly interface for providing the inputs.Using DFS 2D,flow parameters can be estimated with respect to space and time.The values of the flow resistance parameters of model,dry-Coulomb and turbulent friction,were calibrated through the back analysis and the values obtained are 0.1 and 1000 m/s^(2),respectively.Two new methods of calibration are proposed in this study,considering the crosssectional area of flow and topographical changes induced by the debris flow.The proposed methods of calibration provide an effective solution to the cumulative errors induced by coarse-resolution digital elevation models(DEMs)in numerical modelling of debris flows.The statistical indices such as Willmott's index of agreement,mean-absolute-error,and normalized-root-mean-square-error of the calibrated model are 0.5,1.02 and 1.44,respectively.The comparison between simulated and observed values of topographic changes indicates that DFS 2D provides satisfactory results and can be used for dynamic modelling of debris flows.
基金The project supported by the Special Funds for Major State Basic Research(G-1999-0222-07).
文摘Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures.
基金supported by the National Natural Science Foundation of China (No. 52075350)the Special City School Strategic Cooperation Project of Sichuan University and Zigong (No.2021CDZG-3)
文摘The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,ignoring the influence of multiple motion units and the differences in various features among them,which strongly affect the efficiency and accuracy of the simulations.In this study,we constructed a flow field fusion simulation method based on model features by combining key motion unit analysis and various simulation methods and then applied the method to the CRDM simulation process.CRDM performs motion unit decomposition through the structural hierarchy of function-movement-action method,and the key meta-actions are identified as the nodes in the flow field simulation.We established a fused feature-based multimethod simulation process and processed the simulation methods and data according to the features of the fluid domain space and the structural complexity to obtain the fusion simulation results.Compared to traditional simulation methods and real measurements,the simulation method provides advantages in terms of simulation efficiency and accuracy.