期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Experimental and numerical studies of micro PEM fuel cell 被引量:1
1
作者 Rong-Gui Peng Chen-Chung Chung Chiun-Hsun Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期627-635,共9页
A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm 2 and channel depth of about 500 μ m.A theoretica... A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm 2 and channel depth of about 500 μ m.A theoretical analysis is performed in this study for a novel MEMS-based design of a micro PEMFC.The model consists of the conservation equations of mass,momentum,species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code.The polarization curves of simulation are well correlated with experimental data.Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature,current density and water distributions in two different fuel flow rates (15 cm 3 /min and 40 cm 3 /min).Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4 V operating voltage.Model predictions are well within those known for experimental mechanism phenomena. 展开更多
关键词 Micro PEMFC · MEMS · Simulation · fuel flow rate
下载PDF
Numerical modeling and simulation of PEM fuel cells: Progress and perspective 被引量:6
2
作者 Guang-Hua Song Hua Meng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第3期318-334,共17页
This paper provides a comprehensive review on the research and development in multi-scale numerical modeling and simulation of PEM fuel cells. An overview of recent progress in PEM fuel cell modeling has been provided... This paper provides a comprehensive review on the research and development in multi-scale numerical modeling and simulation of PEM fuel cells. An overview of recent progress in PEM fuel cell modeling has been provided. Fundamental transport phenomena in PEM fuel cells and the corresponding mathematical formulation of macroscale models are analyzed. Various important issues in PEM fuel cell modeling and simulation are examined in detail, including fluid flow and species transport, electron and proton transport, heat transfer and thermal management, liquid water transport and water management, transient response behaviors, and cold-start processes. Key areas for further improvements have also been discussed. 展开更多
关键词 PEM fuel cell · Numerical modeling · Multiscale simulation · Two-phase transport · Water management · Thermal management
下载PDF
Fuel Burning Rate Model for Stratified Charge Engine
3
作者 宋金瓯 姜泽军 +1 位作者 姚春德 王洪夫 《Transactions of Tianjin University》 EI CAS 2006年第3期169-173,共5页
A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge ... A zero-dimensional single-zone double-curve model is presented to predict fuel burning rate in stratified charge engines, and it is integrated with GT-Power to predict the overall performance of the stratified charge engines. The model consists of two exponential functions for calculating the fuel burning rate in different charge zones. The model factors are determined by a non-linear curve fitting technique, based on the experimental data obtained from 30 cases in middle and low loads. The results show good agreement between the measured and calculated cylinder pressures, and the deviation between calculated and measured cylinder pressures is less than 5%. The zerodimensional single-zone double-curve model is successful in the combustion modeling for stratified charge engines. 展开更多
关键词 fuel burning rate simulation model stratified charge gasoline engine
下载PDF
Effect of methane-hydrogen mixtures on flow and combustion of coherent jets 被引量:2
4
作者 Ting Cheng Rong Zhu Kai Dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第11期1143-1151,共9页
Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully unde... Coherent jets are widely used in electric are furnace (EAF) steelmaking to increase the oxygen utilization and chemical reaction rates. However, the influence of fuel gas combustion on jet behavior is not fully understood yet. The flow and combustion characteristics of a coherent jet were thus investigated at steelmaking temperature using Fluent software, and a detailed chemical kinetic reaction mecha- nism was used in the combustion reaction model. The axial velocity and total temperature of the supersonic jet were measured via hot state experiments. The simulation results were compared with the experimental data and the empirical jet model proposed by Ito and Muchi and good consistency was obtained. The research results indicated that the potential core length of the coherent jet can be prolonged by optimizing the combustion effect of the fuel gas. Besides, the behavior of the supersonic jet in the subsonic section was also investigated, as it is an important factor for controlling the position of the oxygen lance. The investigation indicated that the attenuation of the coherent jet is more notable than that of the conventional jet in the subsonic section. 展开更多
关键词 Supersonic jet Numerical simulation Mixed fuel gas Flow field Combustion characteristic
原文传递
Potential of secondary aerosol formation from Chinese gasoline engine exhaust
5
作者 Zhuofei Du Min Hu +12 位作者 Jianfei Peng Song Guo Rong Zheng Jing Zheng Dongjie Shang Yanhong Qin He Niu Mengren Li Yudong Yang Sihua Lu Yusheng Wu Min Shao Shijin Shuai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期348-357,共10页
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aeroso... Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. 展开更多
关键词 Port fuel injection Gasoline engine exhaust Secondary aerosol formation Chamber simulation Secondary organic aerosol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部