期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comparison of the severity of injury of hippocampal neuron in rats induced by simulated push-pull maneuver at various degrees
1
作者 Suhong Guo Hui Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第1期10-13,共4页
BACKGROUND: Push-pull effect is often caused during maneuver, and the changes of unconsciousness induced can affect or damage cerebral neurons at various degrees. OBJECTIVE: To observe the effect of simulated push-p... BACKGROUND: Push-pull effect is often caused during maneuver, and the changes of unconsciousness induced can affect or damage cerebral neurons at various degrees. OBJECTIVE: To observe the effect of simulated push-pull maneuver at various degrees on injury of hippocampal neurons in rats and analyze its phase effect. DESIGN: Randomized control study.SETTING : Physiological Department of Jilin Medical College.MATERIALS: A total of 40 healthy male Wistar rats, of clean grade, weighting 205-300 g, aged 3-4 months, were randomly divided into control group (n=4) and three push-pull experimental groups, including +2 Gz group (intensity: -2 Gz to +2 Gz, n=12), +6 Gz group (-6 Gz to +6 Gz, n=12) and +8 Gz group (-8 Gz to +8 Gz, n=12).METHODS: The experiment was completed in the Physiological Department of Jilin Military Medical College from March 2002 to May 2003. ① Rats in the experimental groups were put at the specially rolling arm of animal centrifugal machine. Then, they were pushed and pulled with ±2 Gz, ±6 Gz and ±8 Gz, respectively. The jolt was 1 Gz/s. However, rats in control group were not treated with any ways. ② Stroke index and neurological evaluation were performed on rats in the experimental groups at 0.5, 6 and 24 hours after push-pull. Stroke index was 25 points in total. The higher the scores were, the severer the cerebral injury was. Neurological evaluation was 10 points in total. The higher the scores were, the severer the nerve injury was. ③ Hippocampal tissue in brain of rats were selected to cut into sections at each time points, and form and distribution of neurons were observed in hippocampal areas with HE staining. Degrees of neuronal injury in hippocampal CA1 area were assayed after push-pull at various degrees with electron microscope. ④ Measurement data were compared with t test.MAIN OUTCOME MEASURES:① Stroke index and neurological evaluation; ② form and distribution of neurons in hippocampal areas;③ degrees of neuronal injury in hippocampal CA1 area.RESULTS: A total of 40 rats were involved in the final analysis. ① Stroke index and neurological evaluation of rats in experimental groups: At 30 minutes and 6 hours after push-pull exposure, stroke index and neurological evaluation were higher in ±6Gz group and ±8 Gz group than those in control group (P 〈 0.01), especially at 6 hours after push-pull exposure, those in ±8 Gz group were the highest at each time points [(11.00±2.16), (5.75±1.70) points]. At 24 hours after exposure, those were decreased as compared with those within the former two time points, but the values were still higher than those in control group (P 〈 0.05-0.01). ② Results of HE staining: At 6 and 24 hours after exposure, partially neuronal degeneration was observed in pyramidal layer in ±6 Gz group and ±8 Gz group, including crenation of neurons, tdangle or polygon, and karyopycnosis, especially the injury in ±8 Gz group was the most obvious at 6 hours after exposure. ③ Results of ultrastructure with electron microscope: Partially neuronal degeneration at various degrees was observed in hippocampal CA1 area in ±2 Gz group at 6 hours after exposure and in ±6 Gz group and ±8 Gz group at 6 and 24 hours after exposure. At 6 hours after exposure, nucleus of hippocampal neurons in ±8 Gz group was irregular and umbilication. Caryotin was aggregated, nuclear matrix was swelled and disorder, and vacuolation was also observed. Rough endoplasmic reticulum was expanded, mitochondrium was swelled, and crista was disappeared.CONCLUSION: ① Push-pull cannot damage hippocampal neurons of rats in ±2 Gz group. ② Exposure can cause injury of hippocampal neurons of rats in ±6Gz group and ±8 Gz group, especially the injury is the severest at 6 hours after exposure in ±8 Gz group and relieves gradually 24 hours later. 展开更多
关键词 Comparison of the severity of injury of hippocampal neuron in rats induced by simulated push-pull maneuver at various degrees
下载PDF
DEM simulation of influence of parameters on energy and degree of mixing 被引量:4
2
作者 Simo Siiri Jouko Yliruusi 《Particuology》 SCIE EI CAS CSCD 2011年第4期406-413,共8页
Powder mixing is being modeled using a simulation based on Newtonian mechanics. Variables under consideration include particle friction and the amplitude, frequency, and direction of shaking. Trajectories for each par... Powder mixing is being modeled using a simulation based on Newtonian mechanics. Variables under consideration include particle friction and the amplitude, frequency, and direction of shaking. Trajectories for each particle were recorded, and a mixing degree was calculated for each simulation, for which the average energy transferred into the powder system was recorded and compared to the resulting mixing degree. Mixing of particles originally located near the bottom was studied separately, as was the mixing of particles near the surface. This study shows that choosing the proper mixing parameters not only enhances the final result of mixing, but also yields good results with less strain on the material mixed and on the mixing device. 展开更多
关键词 simulation Mixing Mixing degree Energy
原文传递
Effect of Branching Architecture on Glass Transition Behavior of Hyperbranched Copolystyrenes:the Experiment and Simulation Studies
3
作者 Xiang Luo Shi-jie Xie +3 位作者 黄卫 Bo-na Dai 吕中元 De-yue Yan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第1期77-87,共11页
By controlling the feed ratio of CMS/styrene and the polymerization time, a series of hyperbranched copolystyrenes(HBCPS) were synthesized with comparable weight-averaged molecular weights(Mw) but different degree... By controlling the feed ratio of CMS/styrene and the polymerization time, a series of hyperbranched copolystyrenes(HBCPS) were synthesized with comparable weight-averaged molecular weights(Mw) but different degree of branching(DB) through atom transfer radical self-condensing vinyl copolymerization(ATR-SCVCP) with Cu Br/2,2?-bipyridyl as the catalyst. The resulting HBCPS samples were used to investigate the effect of branching architecture on their glass transition behavior. With the DB increased, the glass transition temperatures(Tg) of HBCPS samples measured by DMA and DSC both decreased. Their spin-lattice relaxation times(1H T1r) of protons displayed the same downtrend with increasing DB. Besides, a correlation between the Tgs and the DB was well established by all-atom molecular dynamics(MD) simulations. The values of MD-determined Tgs are little higher than the corresponding experimental ones. However, the dependence of Tgs on DB is in good agreement with the experimental results, i.e., Tg decreases both in experiments and simulations with increasing DB. 展开更多
关键词 All-atom molecular dynamics simulation degree of branching Glass transition temperature Hyperbranched copolystyrene
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部