Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th...Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.展开更多
Numerical simulations of a representative test of welding process are presented in this paper. A French vessel steel, which involves metallurgical phase transformations in solid state is considered in this work. The a...Numerical simulations of a representative test of welding process are presented in this paper. A French vessel steel, which involves metallurgical phase transformations in solid state is considered in this work. The aim is to validate the thermal-metallurgical-mechanical models taking into account the metallurgical transformations in the finite element codes Sysweld (Framasoft) and Code Aster (EDF). The test is performed on a thin disc submitted to a thermal cycle loading by means of a CO2 laser beam, which leads to metallurgical phase transformations. The thermal, metallurgical and mechanical numerical results have been compared to the experimental results (temperatures, sizes of transformed zones, displacements and residual stresses and strains). The main objective of the numerical analysis is to have some results which enable to give some indications on the ability of the numerical codes to describe the observed phenomena. For that, it is necessary to simulate accurately the thermo-metallurgical history. The comparison of experimental results with the numerical ones leads to some interesting orientations related to the capacities of the considered models to describe the observed phenomena.展开更多
基金supported by National Natural Science Foundation(52204050)Sichuan Science and Technology Program(2021ZHCG0013,22ZDYF3009)。
文摘Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.
文摘Numerical simulations of a representative test of welding process are presented in this paper. A French vessel steel, which involves metallurgical phase transformations in solid state is considered in this work. The aim is to validate the thermal-metallurgical-mechanical models taking into account the metallurgical transformations in the finite element codes Sysweld (Framasoft) and Code Aster (EDF). The test is performed on a thin disc submitted to a thermal cycle loading by means of a CO2 laser beam, which leads to metallurgical phase transformations. The thermal, metallurgical and mechanical numerical results have been compared to the experimental results (temperatures, sizes of transformed zones, displacements and residual stresses and strains). The main objective of the numerical analysis is to have some results which enable to give some indications on the ability of the numerical codes to describe the observed phenomena. For that, it is necessary to simulate accurately the thermo-metallurgical history. The comparison of experimental results with the numerical ones leads to some interesting orientations related to the capacities of the considered models to describe the observed phenomena.