Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for pr...Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend.展开更多
Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is...Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.展开更多
The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this wo...The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.展开更多
The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was pred...The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.展开更多
In order to analyze and simulate the complex super-plastic forming process by computer, a method of equal height bulging for determining material parameters m and K of the superplastic alloy is presented. The formulae...In order to analyze and simulate the complex super-plastic forming process by computer, a method of equal height bulging for determining material parameters m and K of the superplastic alloy is presented. The formulae related to the method are deduced in this paper. The accuracy of the method is available for evaluating the examples used in simulating the superplastic sheet-metal bulging processes.展开更多
The physical and mathematical model of an operating electrowinning cell was established, and the flow of electrolyte was numerically simulated by the commercial software Fluent. The results indicate that there are two...The physical and mathematical model of an operating electrowinning cell was established, and the flow of electrolyte was numerically simulated by the commercial software Fluent. The results indicate that there are two circulations at the surface flow where part of electrolyte backflows to the inlet from the side of cell, and the rest flows directly to the outlet, and the separation of two circulations with opposite direction occurs at the 20th pair of anode-cathode. This phenomenon was observed in the real operation. The electrolyte flows into the space between anode and cathode from the side portion of the cell. Meanwhile, the interelectrode effective flow rate (IEFR) is put forward to describe quantitively the flow field characteristics and is defined as the ratio of electrolyte flow between the anode and cathode to the total flow area. The influences of structure parameters and operating conditions on IEFR, such as the inlet angle, the volumetric flow rate, the inlet position and the height of steel baffles were simulated. The inlet position has a significant influence on the IEFR and its optimal value is 0.9 m below free surface. The inlet angle should be in the range from -10° to 10°. IEFR is in linear proportion with the volumetric flow rate, and the height of the steel baffle has little influence on the flow field.展开更多
Wave fields in Bohai Sea from 1985 to 2004 were simulated using SWAN wave model by inputting high-resolution hindcast wind fields dataset. Comparisons of wave heights between simulation and observation show good agree...Wave fields in Bohai Sea from 1985 to 2004 were simulated using SWAN wave model by inputting high-resolution hindcast wind fields dataset. Comparisons of wave heights between simulation and observation show good agreement in general. According to the annual extreme values of simulation, this paper gives wave extreme parameters with different return-period for all computation grids in Bohai sea.展开更多
During the growth of the hot filament chemical vapor deposition (HFCVD) diamond films, numerical simulations in a 2-D mathematical model were employed to investigate the influence of various deposition parameters on...During the growth of the hot filament chemical vapor deposition (HFCVD) diamond films, numerical simulations in a 2-D mathematical model were employed to investigate the influence of various deposition parameters on the gas physical parameters, including the temperature, velocity and volume density of gas. It was found that, even in the case of optimized deposition parameters, the space distributions of gas parameters were heterogeneous due primarily to the thermal blockage come from the hot filaments and cryogenic pump effect arisen from the cold reactor wall. The distribution of volume density agreed well with the thermal round-flow phenomenon, one of the key obstacles to obtaining high growth rate in HFCVD process. In virtue of isothermal boundary with high temperature or adiabatic boundary condition of reactor wall, however, the thermal roundflow was profoundly reduced and as a consequence, the uniformity of gas physical parameters was considerably improved, as identified by the experimental films growth.展开更多
Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal ...Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic.展开更多
The efficiency of particle screening was studied over a range of vibrational parameters including amplitude, frequency and vibrational direction. The Discrete Element Method (DEM) was used to simulate the screening pr...The efficiency of particle screening was studied over a range of vibrational parameters including amplitude, frequency and vibrational direction. The Discrete Element Method (DEM) was used to simulate the screening process. A functional relationship between efficiency and the parameters, both singly and combined, is established. The function is a complicated exponential. Optimal amplitude and frequency values are smaller for particles near the mesh and larger for other particles. The optimum vibration angle is 45° for nearly all kinds of particles. A transverse velocity, V⊥, was defined and V⊥=0.2 m/s was identified to be the most efficient operating point by both simulation and experimental observation. Comparison of these results with those reported by others is included.展开更多
Crop models can be useful tools ibr optimizing fertilizer management for a targeted crop yield while minimizing nutrient losses. In this paper, the parameters of the decision support system for agrotechnology transfer...Crop models can be useful tools ibr optimizing fertilizer management for a targeted crop yield while minimizing nutrient losses. In this paper, the parameters of the decision support system for agrotechnology transfer (DSSAT)-CERES-Maize were optimized using a new method to provide a better simulation of maize (Zea mays L.) growth and N upfake in response to different nitrogen application rates. Field data were collected from a 5 yr field experiment (2006-2010) on a Black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China. After cultivar calibration, the CERES-Maize model was able to simulate aboveground biomass and crop yield of in the evaluation data set (n-RMSE=5.0-14.6%), but the model still over-estimated aboveground N uptake (i.e., with E values from -4.4 to -21.3 kg N ha-~). By analyzing DSSAT equation, N stress coefficient for changes in concentration with growth stage (CTCNP2) is related to N uptake. Further sensitivity analysis of the CTCNP2 showed that the DSSAT model simulated maize nitrogen uptake more precisely after the CTCNP2 coefficient was adjusted to the field site condition. The results indicated that in addition to calibrating 6 coefficients of maize cultivars, radiation use efficiency (RUE), growing degree days for emergence (GDDE), N stress coefficient, CTCNP2, and soil fertility factor (SLPF) also need to be calibrated in order to simulate aboveground biomass, yield and N uptake correctly. Independent validation was conducted using 2008-2010 experiments and the good agreement between the simulated and the measured results indicates that the DSSAT CERES-Maize model could be a useful tool for predicting maize production in Northeast China.展开更多
True stress?true strain curves of Incoloy028alloy at high temperature and strain rate were investigated by hot compression test.These curves show that the maximum flow stress decreases with the increase in temperature...True stress?true strain curves of Incoloy028alloy at high temperature and strain rate were investigated by hot compression test.These curves show that the maximum flow stress decreases with the increase in temperature and the decrease in strain rate.FEM simulation was employed to investigate the influence of temperature,extrusion speed and friction coefficient on the extrusion load,stress,strain and strain rate in the extrusion process.The increase of extrusion temperature results in decrease of load and deformation resistance,but has little influence on strain and strain rate.When extrusion speed changes between200and350mm/s,no obvious change about extrusion load can be found.Sharp peak value up to42500kN emerges in the extrusion load curve and the extrusion process becomes unstable seriously when extrusion speed rises up to400mm/s.Both stress and strain rate increase with the raise of extrusion speed.When friction coefficient is between0.02and0.03,deformation resistance is about160MPa and the strain rate can be limited below70s?1.Successful production of Incoloy028tube verifies the optimized parameters by FEM simulation analysis,and mechanical tests results of the products meet the required properties.展开更多
By a simple phase field model, a series of numerical simulations of solidification microstructure was performed to show a rich variety of dendritic patterns. At the same time, the relation between the morphology of gr...By a simple phase field model, a series of numerical simulations of solidification microstructure was performed to show a rich variety of dendritic patterns. At the same time, the relation between the morphology of grain growth and some parameters including the strength of anisotropy, dimensionless latent heat and the size of initial solid zone was studied. It is for the first time that patterns of grain growth were associated with the size of initial solid zone, which is an interesting issue. The possible reason for this may be that variation in the size of initial solid zone may bring about fluctuation of the interface energy, making the interface unstable.展开更多
The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they ...The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they fit close to each other, which indicates this FE model is effective. Based on this model, the effects of roll gap (t) and roll radius (R) on solidification were simulated. The simulated results give the relationship between t or R and the position of the freezing point. The larger the t is and the smaller the R is, the closer the position of the freezing point is to the exit.展开更多
Mass attenuation coefficients, effective atomic numbers, effective electron densities and Kerma relative to air for adipose, muscle and bone tissues have been investigated in the photon energy region from 20 keV up to...Mass attenuation coefficients, effective atomic numbers, effective electron densities and Kerma relative to air for adipose, muscle and bone tissues have been investigated in the photon energy region from 20 keV up to 50 MeV with Geant4 simulation package and theoretical calculations. Based on Geant4 results of the mass attenuation coefficients, the effective atomic numbers for the tissue models have been calculated. The calculation results have been compared with the values of the Auto-Zeff program and with other studies available in the literature. Moreover, Kerma of studied tissues relative to air has been determined and found to be dependent on the absorption edges of the tissue constituent elements.展开更多
On the basis of energy balance in the plasma gas, a new, simplified but effective mathematical model is developed to predict the temperature, velocity and ionization degrees of different species at the torch exit, whi...On the basis of energy balance in the plasma gas, a new, simplified but effective mathematical model is developed to predict the temperature, velocity and ionization degrees of different species at the torch exit, which can be directly calculated just by inputting the general spraying parameters, such as current, voltage, flow rates of gases, etc. Based on this method, the effects of plasma current and the flow rate of Ar on the basic parameters at the torch exit are discussed. The results show that the temperature, velocity and ionization degrees of gas species will increase with increasing the plasma current; while increasing Ar flow rate can increase the velocity at the exit but decrease the temperature and ionization degrees of plasma species. The method would be helpful to predict the temperature and velocity fields in a plasma jet in future, and direct the practical plasma spray operations.展开更多
The manual selection of environment parameters during welding simulation will bring a significant error to the simulation result of welding temperature field. By a combination of finite element method (FEM) and infr...The manual selection of environment parameters during welding simulation will bring a significant error to the simulation result of welding temperature field. By a combination of finite element method (FEM) and infrared thermography, these environment parameters were inversed mathematically in place of previous manual selection. First, FEM model of the welding process was constructed, and the temperature field was computed with initial environment parameters. Then, a real welding process was conducted and the temperature field was measured by infrared thermography. Last, the simulation and measurement results were compared, and the environment parameters were adjusted continuously with the genetic algorithm ( GA ) until the simulation matched the measurement best. Parameters according to the best-matched simulation results were considered as the most appropriate parameters.展开更多
The electrical and plasma parameters of a low pressure inductively coupled argon plasma are investigated over a wide range of parameters(RF power, flow rate and pressure) by diverse characterizations. The external a...The electrical and plasma parameters of a low pressure inductively coupled argon plasma are investigated over a wide range of parameters(RF power, flow rate and pressure) by diverse characterizations. The external antenna voltage and current increase with the augment of RF power, whereas decline with the enhancement of gas pressure and flow rate conversely.Compared with gas flow rate and pressure, the power transfer efficiency is significantly improved by RF power, and achieved its maximum value of 0.85 after RF power injected excess125 W. Optical emission spectroscopy(OES) provides the local mean values of electron excited temperature and electron density in inductively coupled plasma(ICP) post regime, which vary in a range of 0.81 eV to 1.15 eV and 3.7×10^(16)m^(-3)to 8.7×10^(17)m^(-3)respectively. Numerical results of the average magnitudes of electron temperature and electron density in twodimensional distribution exhibit similar variation trend with the experimental results under different operating condition by using COMSOL Multiphysics. By comprehensively understanding the characteristics in a low pressure ICP, optimized operating conditions could be anticipated aiming at different academic and industrial applications.展开更多
A thee-dimensional finite-element simulation of stretching technological parameters of heavy forgings is performed by using ANSYS program. The law of internal stress distribution with different bt/h (tool width ratio...A thee-dimensional finite-element simulation of stretching technological parameters of heavy forgings is performed by using ANSYS program. The law of internal stress distribution with different bt/h (tool width ratio) and different bb/h (blank width ratio) is studied. Consequently,the critical tool width ratio( bt/h )cr and blank width ratio( bb/ h )cr leading no bi-axial tension are obtained. It lays a credible foundation for designing reasonable stretching technology.展开更多
Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is prop...Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is proposed,and the calculated results are compared with the experimental results.The results show that the numerical simulation method is feasible.Compared with other commercial softwares,this method has the advantages of higher solution efficiency and greater flexibility.According to the needs of users,the solver can be built on the basis of original code,and the corresponding discrete method can be optimized.This method can achieve optimization algorithms,save time and cost,etc.Secondly,the effects of different parameters(mesh density,time step,the selection of sidewall boundary conditions and inlet turbulence intensity)on numerical simulation of the VMCT are studied in detail.The findings summarize an effective CFD simulation strategy based on OpenFOAM and provide a valuable reference for future CFD simulations of VMCTs.展开更多
文摘Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend.
基金supported by the National Natural Science Foundation of China(No.21776264).
文摘Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.
文摘The microstructures and thermodynamic properties of mixed systems comprising pyridinium ionic liquid[HPy][BF_(4)]and acetonitrile at different mole fractions were studied using molecular dynamics simulation in this work.The following properties were determined:density,self-diffusion coefficient,excess molar volume,and radial distribution function.The results show that with an increase in the mole fraction of[HPy][BF_(4)],the self-diffusion coefficient decreases.Additionally,the excess molar volume initially decreases,reaches a minimum,and then increases.The rules of radial distribution functions(RDFs)of characteristic atoms are different.With increasing the mole fraction of[HPy][BF_(4)],the first peak of the RDFs of HA1-F decreases,while that of CT6-CT6 rises at first and then decreases.This indicates that the solvent molecules affect the polar and non-polar regions of[HPy][BF_(4)]differently.
文摘The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.
文摘In order to analyze and simulate the complex super-plastic forming process by computer, a method of equal height bulging for determining material parameters m and K of the superplastic alloy is presented. The formulae related to the method are deduced in this paper. The accuracy of the method is available for evaluating the examples used in simulating the superplastic sheet-metal bulging processes.
基金Project(2011AA061003)supported by the National High-Tech Research and Development Program of China
文摘The physical and mathematical model of an operating electrowinning cell was established, and the flow of electrolyte was numerically simulated by the commercial software Fluent. The results indicate that there are two circulations at the surface flow where part of electrolyte backflows to the inlet from the side of cell, and the rest flows directly to the outlet, and the separation of two circulations with opposite direction occurs at the 20th pair of anode-cathode. This phenomenon was observed in the real operation. The electrolyte flows into the space between anode and cathode from the side portion of the cell. Meanwhile, the interelectrode effective flow rate (IEFR) is put forward to describe quantitively the flow field characteristics and is defined as the ratio of electrolyte flow between the anode and cathode to the total flow area. The influences of structure parameters and operating conditions on IEFR, such as the inlet angle, the volumetric flow rate, the inlet position and the height of steel baffles were simulated. The inlet position has a significant influence on the IEFR and its optimal value is 0.9 m below free surface. The inlet angle should be in the range from -10° to 10°. IEFR is in linear proportion with the volumetric flow rate, and the height of the steel baffle has little influence on the flow field.
基金supported by National Nature Science Foundation of China, China National Basic Research Program (Grant No. 2009CB421201)
文摘Wave fields in Bohai Sea from 1985 to 2004 were simulated using SWAN wave model by inputting high-resolution hindcast wind fields dataset. Comparisons of wave heights between simulation and observation show good agreement in general. According to the annual extreme values of simulation, this paper gives wave extreme parameters with different return-period for all computation grids in Bohai sea.
基金This work was partially supported by the National Natural Science Foundation of China (NSFC) under Contract No. 59292800 the Science and Technology Committee of Liaoning Province.
文摘During the growth of the hot filament chemical vapor deposition (HFCVD) diamond films, numerical simulations in a 2-D mathematical model were employed to investigate the influence of various deposition parameters on the gas physical parameters, including the temperature, velocity and volume density of gas. It was found that, even in the case of optimized deposition parameters, the space distributions of gas parameters were heterogeneous due primarily to the thermal blockage come from the hot filaments and cryogenic pump effect arisen from the cold reactor wall. The distribution of volume density agreed well with the thermal round-flow phenomenon, one of the key obstacles to obtaining high growth rate in HFCVD process. In virtue of isothermal boundary with high temperature or adiabatic boundary condition of reactor wall, however, the thermal roundflow was profoundly reduced and as a consequence, the uniformity of gas physical parameters was considerably improved, as identified by the experimental films growth.
基金The research results are part of a project carried out in 1999-2002 and financially supported by the US National Foundation(No.ASF EARO125968)in 2001-2003 and financially supported by the National Natural Science Foundation of China(Nos.40271089)the Major Sci-Tech Research Project of the Ministry of Education.
文摘Based on the theory of finite element analysis, an inverse analysis model for the comprehensive medium parameters of the Qinghai-Tibet Plateau is set up. With the help of GPS velocity field, the comprehensive crustal medium parameters of the plateau are inversely analyzed and the characteristics of the related movement macroscopically simulated. It is then concluded that the tectonic deformation of the plateau is mainly in the form of a N-S compression accompanied by an E-W stretching, and the present tectonic setting of the plateau should be the result of the collision between the Indian and the Eurasian continents during the Cenozoic.
基金the Special Topic of Key Science and Technology of Fujian Province Fund (No.2006HZ0002-2)
文摘The efficiency of particle screening was studied over a range of vibrational parameters including amplitude, frequency and vibrational direction. The Discrete Element Method (DEM) was used to simulate the screening process. A functional relationship between efficiency and the parameters, both singly and combined, is established. The function is a complicated exponential. Optimal amplitude and frequency values are smaller for particles near the mesh and larger for other particles. The optimum vibration angle is 45° for nearly all kinds of particles. A transverse velocity, V⊥, was defined and V⊥=0.2 m/s was identified to be the most efficient operating point by both simulation and experimental observation. Comparison of these results with those reported by others is included.
基金funded by the National Basic Research Program of China (2007CB109306 and 2013CB127405)The authors acknowledge Ministry of Education,China,for providing the scholarship (2008325008)
文摘Crop models can be useful tools ibr optimizing fertilizer management for a targeted crop yield while minimizing nutrient losses. In this paper, the parameters of the decision support system for agrotechnology transfer (DSSAT)-CERES-Maize were optimized using a new method to provide a better simulation of maize (Zea mays L.) growth and N upfake in response to different nitrogen application rates. Field data were collected from a 5 yr field experiment (2006-2010) on a Black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China. After cultivar calibration, the CERES-Maize model was able to simulate aboveground biomass and crop yield of in the evaluation data set (n-RMSE=5.0-14.6%), but the model still over-estimated aboveground N uptake (i.e., with E values from -4.4 to -21.3 kg N ha-~). By analyzing DSSAT equation, N stress coefficient for changes in concentration with growth stage (CTCNP2) is related to N uptake. Further sensitivity analysis of the CTCNP2 showed that the DSSAT model simulated maize nitrogen uptake more precisely after the CTCNP2 coefficient was adjusted to the field site condition. The results indicated that in addition to calibrating 6 coefficients of maize cultivars, radiation use efficiency (RUE), growing degree days for emergence (GDDE), N stress coefficient, CTCNP2, and soil fertility factor (SLPF) also need to be calibrated in order to simulate aboveground biomass, yield and N uptake correctly. Independent validation was conducted using 2008-2010 experiments and the good agreement between the simulated and the measured results indicates that the DSSAT CERES-Maize model could be a useful tool for predicting maize production in Northeast China.
基金Project(50925417)supported by the National Science Fund for Distinguished Young Scholars of China
文摘True stress?true strain curves of Incoloy028alloy at high temperature and strain rate were investigated by hot compression test.These curves show that the maximum flow stress decreases with the increase in temperature and the decrease in strain rate.FEM simulation was employed to investigate the influence of temperature,extrusion speed and friction coefficient on the extrusion load,stress,strain and strain rate in the extrusion process.The increase of extrusion temperature results in decrease of load and deformation resistance,but has little influence on strain and strain rate.When extrusion speed changes between200and350mm/s,no obvious change about extrusion load can be found.Sharp peak value up to42500kN emerges in the extrusion load curve and the extrusion process becomes unstable seriously when extrusion speed rises up to400mm/s.Both stress and strain rate increase with the raise of extrusion speed.When friction coefficient is between0.02and0.03,deformation resistance is about160MPa and the strain rate can be limited below70s?1.Successful production of Incoloy028tube verifies the optimized parameters by FEM simulation analysis,and mechanical tests results of the products meet the required properties.
基金This work was supported by the National Natural Science Foundation of China(GranL No.10176009)
文摘By a simple phase field model, a series of numerical simulations of solidification microstructure was performed to show a rich variety of dendritic patterns. At the same time, the relation between the morphology of grain growth and some parameters including the strength of anisotropy, dimensionless latent heat and the size of initial solid zone was studied. It is for the first time that patterns of grain growth were associated with the size of initial solid zone, which is an interesting issue. The possible reason for this may be that variation in the size of initial solid zone may bring about fluctuation of the interface energy, making the interface unstable.
文摘The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they fit close to each other, which indicates this FE model is effective. Based on this model, the effects of roll gap (t) and roll radius (R) on solidification were simulated. The simulated results give the relationship between t or R and the position of the freezing point. The larger the t is and the smaller the R is, the closer the position of the freezing point is to the exit.
文摘Mass attenuation coefficients, effective atomic numbers, effective electron densities and Kerma relative to air for adipose, muscle and bone tissues have been investigated in the photon energy region from 20 keV up to 50 MeV with Geant4 simulation package and theoretical calculations. Based on Geant4 results of the mass attenuation coefficients, the effective atomic numbers for the tissue models have been calculated. The calculation results have been compared with the values of the Auto-Zeff program and with other studies available in the literature. Moreover, Kerma of studied tissues relative to air has been determined and found to be dependent on the absorption edges of the tissue constituent elements.
文摘On the basis of energy balance in the plasma gas, a new, simplified but effective mathematical model is developed to predict the temperature, velocity and ionization degrees of different species at the torch exit, which can be directly calculated just by inputting the general spraying parameters, such as current, voltage, flow rates of gases, etc. Based on this method, the effects of plasma current and the flow rate of Ar on the basic parameters at the torch exit are discussed. The results show that the temperature, velocity and ionization degrees of gas species will increase with increasing the plasma current; while increasing Ar flow rate can increase the velocity at the exit but decrease the temperature and ionization degrees of plasma species. The method would be helpful to predict the temperature and velocity fields in a plasma jet in future, and direct the practical plasma spray operations.
文摘The manual selection of environment parameters during welding simulation will bring a significant error to the simulation result of welding temperature field. By a combination of finite element method (FEM) and infrared thermography, these environment parameters were inversed mathematically in place of previous manual selection. First, FEM model of the welding process was constructed, and the temperature field was computed with initial environment parameters. Then, a real welding process was conducted and the temperature field was measured by infrared thermography. Last, the simulation and measurement results were compared, and the environment parameters were adjusted continuously with the genetic algorithm ( GA ) until the simulation matched the measurement best. Parameters according to the best-matched simulation results were considered as the most appropriate parameters.
基金supported by National Natural Science Foundation of China(No.51576174)
文摘The electrical and plasma parameters of a low pressure inductively coupled argon plasma are investigated over a wide range of parameters(RF power, flow rate and pressure) by diverse characterizations. The external antenna voltage and current increase with the augment of RF power, whereas decline with the enhancement of gas pressure and flow rate conversely.Compared with gas flow rate and pressure, the power transfer efficiency is significantly improved by RF power, and achieved its maximum value of 0.85 after RF power injected excess125 W. Optical emission spectroscopy(OES) provides the local mean values of electron excited temperature and electron density in inductively coupled plasma(ICP) post regime, which vary in a range of 0.81 eV to 1.15 eV and 3.7×10^(16)m^(-3)to 8.7×10^(17)m^(-3)respectively. Numerical results of the average magnitudes of electron temperature and electron density in twodimensional distribution exhibit similar variation trend with the experimental results under different operating condition by using COMSOL Multiphysics. By comprehensively understanding the characteristics in a low pressure ICP, optimized operating conditions could be anticipated aiming at different academic and industrial applications.
基金This project is supported by Doctorate Foundation of Ministry of Education of China(No. 96021603) . Manuscript received
文摘A thee-dimensional finite-element simulation of stretching technological parameters of heavy forgings is performed by using ANSYS program. The law of internal stress distribution with different bt/h (tool width ratio) and different bb/h (blank width ratio) is studied. Consequently,the critical tool width ratio( bt/h )cr and blank width ratio( bb/ h )cr leading no bi-axial tension are obtained. It lays a credible foundation for designing reasonable stretching technology.
基金National Natural Science Foundation of China(11572094,5171101175,51809083)。
文摘Using the PimpleDyMFoam solver in open-source computing software OpenFOAM,based on the SST k-ωturbulence model and PIMPLE algorithm,a numerical simulation method of vertical-axis marine current turbines(VMCTs)is proposed,and the calculated results are compared with the experimental results.The results show that the numerical simulation method is feasible.Compared with other commercial softwares,this method has the advantages of higher solution efficiency and greater flexibility.According to the needs of users,the solver can be built on the basis of original code,and the corresponding discrete method can be optimized.This method can achieve optimization algorithms,save time and cost,etc.Secondly,the effects of different parameters(mesh density,time step,the selection of sidewall boundary conditions and inlet turbulence intensity)on numerical simulation of the VMCT are studied in detail.The findings summarize an effective CFD simulation strategy based on OpenFOAM and provide a valuable reference for future CFD simulations of VMCTs.