In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind f...In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind forcing was constructed by combining reanalyzed wind data with a Holland typhoon wind model.Various parameters,such as the Holland fitting parameter(B)and the maximum wind radius?,were investigated in sensitivity experiments in the Holland model that affect the wind field construction.Six different formulations were considered and the parameters determined by comparing the simulated wind results with in-situ wind measurements.The key factors affecting wave growth and dissipation processes from deep to shallow waters were studied,including wind input,whitecapping,and bottom friction.Comparison with in-situ wave measurements suggested that the KOMEN scheme(wind input exponential growth and whitecapping energy dissipation)and the JONSWAP scheme(dissipation of bottom friction)resulted in good reproduction of the significant wave height of typhoon waves.A preliminary analysis of the wave characteristics in terms of wind-sea and swell wave revealed that swell waves dominated with the distance of R to the eye of the typhoon,while wind-sea prevailed in the outer region up to six to eight times the R values despite a clear misalignment between wind and waves.The results support the hypothesis that nonlinear wave-wave interactions may play a key role in the formation of wave characteristics.展开更多
In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ...In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.展开更多
The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea...The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea(SCS) was evaluated. A blended wind field, consisting of an interior domain based on Fujita's model and an exterior domain based on Takahashi's model, was used as the driving wind field. The waves driven by Typhoon Kai-tak over the SCS that occurred in 2012 were selected for the numerical simulation research. Sensitivity analyses of time step, grid resolution, and angle resolution were performed in order to obtain optimal model settings. Through sensitivity analyses, it can be found that the time step has a large influence on the results, while grid resolution and angle resolution have a little effect on the results.展开更多
Sea ice can attenuate wave energy significantly when waves propagate through ice covers.In this study,a third-generation wave model called simulating wave nearshore(SWAN)was advanced to include damping of wave energy ...Sea ice can attenuate wave energy significantly when waves propagate through ice covers.In this study,a third-generation wave model called simulating wave nearshore(SWAN)was advanced to include damping of wave energy due to friction in the boundary layer below the ice.With the addition of an eddy viscosity wave-ice model,the resulting new SWAN model was applied to simulate wave height in the Bohai Sea during the freezing winter.Its performance was validated with available buoy data near the ice edge,and the new model showed an improvement in accuracy because it considered the ice effect on waves.We then performed a wave hindcast for the Bohai Sea during a freezing period in the winter of 2016 that had the severest ice conditions in recent years and found that the mean significant wave height changed by approximately 16.52%.In the Liaodong Bay,where sea ice concentration is highest,the change reached 32.57%,compared with the most recent SWAN model version.The average influence of sea ice on wave height simulation was also evaluated over a five-year(2013-2017)hindcast during January and February.We found that the wave height decrease was more significant in storm conditions even the eddy viscosity wave-ice model itself showed no advantage on damping stronger waves.展开更多
The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave...The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave action model(the Simulating WAves Nearshore model), simulations were developed to analyze the spatiotemporal characteristics of wind waves and to output spectral data. It is shown that the cold wave-induced spectra can be well described by the modified Joint North Sea Wave Project spectral form. The growth of wave spectra is comprehensively reflected by the evolution of the three characteristic parameters: peak frequency, spectral peak and wave energy. Besides, the approximations of dependences between spectral parameters and the three types of universal induced factors are obtained with the least squares method and compared systematically. Fetch and peak frequency turn out to be suitable parameters to describe the spectral parameters, while the dependences on the inverse wave age vary in different sea areas. In general, the derived relationships improve on results from previous studies for better practical application of the wind wave frequency spectrum in the northern East China Sea.展开更多
In this study, the simulating waves nearshore (SWAN) model with a locally refined curvilinear grid system was constructed to simulate waves in Jervis Bay and the neighbouring ocean of Australia, with the aim of examin...In this study, the simulating waves nearshore (SWAN) model with a locally refined curvilinear grid system was constructed to simulate waves in Jervis Bay and the neighbouring ocean of Australia, with the aim of examining the wave characteristics in an area with special topography and practical importance. This model was verified by field observations from buoys and acoustic Doppler profilers (ADPs). The model precisions were validated for both wind-generated waves and open-ocean swells. We present an approach with which to convert ADP-observed current data from near the bottom into the significant wave height. Our approach is deduced from the Fourier transform technique and the linear wave theory. The results illustrate that the location of the bay entrance is important because it allows the swells in the dominant direction to propagate into the bay despite the narrowness of the bay entrance. The wave period T p is also strongly related to the wave direction in the semi-enclosed bay. The Tp is great enough along the entire propagating direction from the bay entrance to the top of the bay, and the largest Tp appears along the north-west coast, which is the end tip of the swells’ propagation.展开更多
获取高分辨率的风场数据和气压场数据是精确模拟台风浪的基础,采用经验公式构建台风风场和气压场对海浪模式进行驱动,无法反映台风影响下海气动力过程,难以提供高精度的风场、气压场数据。本文基于中尺度大气模式WRF(Weather Research a...获取高分辨率的风场数据和气压场数据是精确模拟台风浪的基础,采用经验公式构建台风风场和气压场对海浪模式进行驱动,无法反映台风影响下海气动力过程,难以提供高精度的风场、气压场数据。本文基于中尺度大气模式WRF(Weather Research and Forecasting model)和第三代海浪模式SWAN(Simulating WAves Nearshore model),构建了南中国海地区大气—海浪实时双向耦合模式,针对超强台风"威马逊"进行数值模拟。将数值模拟结果与现场观测结果及卫星高度计观测结果进行对比验证,验证结果表明,本文建立的WRF-SWAN耦合模式在对台风"威马逊"影响下的南中国海台风浪的模拟中展现出较高的模拟精度,揭示了台风风场分布和台风浪分布在空间上的"右偏性"不对称分布特征及其形成机制。基于WRF和SWAN建立的大气-海浪实时双向耦合模式能够准确模拟台风动力过程以及台风浪的时空分布特征,可以推广用于南中国海地区台风浪的模拟分析。展开更多
基金Supported by the National Natural Science Foundation of China(Nos.U1706216,41606024,41506023)the National Key Research and Development Program of China(Nos.2016YFC1402000,2018YFC1407003)+2 种基金the CAS Strategic Priority Project(No.XDA19060202)the NSFC Innovative Group Grant Project(No.41421005)the NSFC-Shandong Joint Fund for Marine Science Research Centers Grant(No.U1406402)
文摘In this study,typhoon waves generated during three typhoons(Damrey(1210),Fung-wong(1416),and Chan-hom(1509))in the Yellow Sea and East China Sea were simulated in a simulating waves nearshore(SWAN)model,and the wind forcing was constructed by combining reanalyzed wind data with a Holland typhoon wind model.Various parameters,such as the Holland fitting parameter(B)and the maximum wind radius?,were investigated in sensitivity experiments in the Holland model that affect the wind field construction.Six different formulations were considered and the parameters determined by comparing the simulated wind results with in-situ wind measurements.The key factors affecting wave growth and dissipation processes from deep to shallow waters were studied,including wind input,whitecapping,and bottom friction.Comparison with in-situ wave measurements suggested that the KOMEN scheme(wind input exponential growth and whitecapping energy dissipation)and the JONSWAP scheme(dissipation of bottom friction)resulted in good reproduction of the significant wave height of typhoon waves.A preliminary analysis of the wave characteristics in terms of wind-sea and swell wave revealed that swell waves dominated with the distance of R to the eye of the typhoon,while wind-sea prevailed in the outer region up to six to eight times the R values despite a clear misalignment between wind and waves.The results support the hypothesis that nonlinear wave-wave interactions may play a key role in the formation of wave characteristics.
基金The National Natural Science Foundation of China(No.51209040,51279134)the Natural Science Foundation of Jiangsu Province(No.BK2012341)+1 种基金the Fundamental Research Funds for the Central Universities(No.SJLX_0087)the Research Fund of Nanjing Hydraulic Research Institute(No.Y213012)
文摘In order to facilitate engineering design and coastal flooding protection, the potential storm surge induced by a typhoon is studied.Using an unstructured mesh, a coupled model which combines the advanced circulation ( ADCIRC ) hydrodynamic model and simulating waves nearshore ( SWAN ) model is applied to analyze the storm surge and waves on the coast of Jiangsu Province.The verifications of wind velocity, tidal levels and wave height show that this coupling model performs well to reflect the characteristics of the water levels and waves in the studied region.Results show that the effect of radiation stress on storm surge is significant, especially in shallow areas such as the coast of Jiangsu Province and the Yangtze estuary.By running the coupled model, the simulated potential flooding results can be employed in coastal engineering applications in the Jiangsu coastal area, such as storm surge warnings and extreme water level predictions.
基金supported by the National Natural Science Foundation of China(Grants No.51239001,51179015,and 51509023)the Open Research Foundation of the Key Laboratory of the Pearl River Estuarine Dynamics and Associated Process Regulation,the Ministry of Water Resources(Grant No.2018KJ03)+1 种基金the Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2017SS04)the Key Laboratory of Technology for Safeguarding of Maritime Rights and Interests and Application,State Oceanic Administration(Grant No.SCS1606)
文摘The simulating waves nearshore(SWAN) model has typically been designed for wave simulations in near-shore regions. In this study, the model's applicability to the simulation of typhoon waves in the South China Sea(SCS) was evaluated. A blended wind field, consisting of an interior domain based on Fujita's model and an exterior domain based on Takahashi's model, was used as the driving wind field. The waves driven by Typhoon Kai-tak over the SCS that occurred in 2012 were selected for the numerical simulation research. Sensitivity analyses of time step, grid resolution, and angle resolution were performed in order to obtain optimal model settings. Through sensitivity analyses, it can be found that the time step has a large influence on the results, while grid resolution and angle resolution have a little effect on the results.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402001)the Fundamental Funds for the Central Universities(No.201713026)
文摘Sea ice can attenuate wave energy significantly when waves propagate through ice covers.In this study,a third-generation wave model called simulating wave nearshore(SWAN)was advanced to include damping of wave energy due to friction in the boundary layer below the ice.With the addition of an eddy viscosity wave-ice model,the resulting new SWAN model was applied to simulate wave height in the Bohai Sea during the freezing winter.Its performance was validated with available buoy data near the ice edge,and the new model showed an improvement in accuracy because it considered the ice effect on waves.We then performed a wave hindcast for the Bohai Sea during a freezing period in the winter of 2016 that had the severest ice conditions in recent years and found that the mean significant wave height changed by approximately 16.52%.In the Liaodong Bay,where sea ice concentration is highest,the change reached 32.57%,compared with the most recent SWAN model version.The average influence of sea ice on wave height simulation was also evaluated over a five-year(2013-2017)hindcast during January and February.We found that the wave height decrease was more significant in storm conditions even the eddy viscosity wave-ice model itself showed no advantage on damping stronger waves.
基金Supported by the National Key Research and Development Program of China(No.2016YFC1402000)the National Natural Science Foundation of China(Nos.41376027,41406017,U1406401,41421005)
文摘The growth of frequency spectra and spectral parameters of wind waves generated by cold waves, a kind of severe weather system, in the northern East China Sea is studied in this paper. Based on a third-generation wave action model(the Simulating WAves Nearshore model), simulations were developed to analyze the spatiotemporal characteristics of wind waves and to output spectral data. It is shown that the cold wave-induced spectra can be well described by the modified Joint North Sea Wave Project spectral form. The growth of wave spectra is comprehensively reflected by the evolution of the three characteristic parameters: peak frequency, spectral peak and wave energy. Besides, the approximations of dependences between spectral parameters and the three types of universal induced factors are obtained with the least squares method and compared systematically. Fetch and peak frequency turn out to be suitable parameters to describe the spectral parameters, while the dependences on the inverse wave age vary in different sea areas. In general, the derived relationships improve on results from previous studies for better practical application of the wind wave frequency spectrum in the northern East China Sea.
基金Supported by the National Key R&D Program of China(No.2017YFC1404200)the National Natural Science Foundation of China(No.41406046)+4 种基金the Fundamental Research Funds for National Public Research Institutes of China(No.2014T01)the Overseas Students Science and Technology Activities Project Merit Funding and the ChinaKorea Cooperation Project for Nuclear Safety through the China-Korea Joint Ocean Research Centre(CKJORC)the National Program on Global Change and Air-Sea Interaction(No.GASI-IPOVAI-05)the International Cooperative Project on the China-Australia Research Centre for Maritime Engineering of Ministry of Science and Technology(No.2016YFE0101400)the Qingdao National Laboratory for Marine Science and Technology(Nos.2015ASTP,2016ASKJ16,2015ASKJ01)
文摘In this study, the simulating waves nearshore (SWAN) model with a locally refined curvilinear grid system was constructed to simulate waves in Jervis Bay and the neighbouring ocean of Australia, with the aim of examining the wave characteristics in an area with special topography and practical importance. This model was verified by field observations from buoys and acoustic Doppler profilers (ADPs). The model precisions were validated for both wind-generated waves and open-ocean swells. We present an approach with which to convert ADP-observed current data from near the bottom into the significant wave height. Our approach is deduced from the Fourier transform technique and the linear wave theory. The results illustrate that the location of the bay entrance is important because it allows the swells in the dominant direction to propagate into the bay despite the narrowness of the bay entrance. The wave period T p is also strongly related to the wave direction in the semi-enclosed bay. The Tp is great enough along the entire propagating direction from the bay entrance to the top of the bay, and the largest Tp appears along the north-west coast, which is the end tip of the swells’ propagation.
文摘获取高分辨率的风场数据和气压场数据是精确模拟台风浪的基础,采用经验公式构建台风风场和气压场对海浪模式进行驱动,无法反映台风影响下海气动力过程,难以提供高精度的风场、气压场数据。本文基于中尺度大气模式WRF(Weather Research and Forecasting model)和第三代海浪模式SWAN(Simulating WAves Nearshore model),构建了南中国海地区大气—海浪实时双向耦合模式,针对超强台风"威马逊"进行数值模拟。将数值模拟结果与现场观测结果及卫星高度计观测结果进行对比验证,验证结果表明,本文建立的WRF-SWAN耦合模式在对台风"威马逊"影响下的南中国海台风浪的模拟中展现出较高的模拟精度,揭示了台风风场分布和台风浪分布在空间上的"右偏性"不对称分布特征及其形成机制。基于WRF和SWAN建立的大气-海浪实时双向耦合模式能够准确模拟台风动力过程以及台风浪的时空分布特征,可以推广用于南中国海地区台风浪的模拟分析。