The capillary force of a liquid bridge with a pinned contact line between a small disk and a parallel plate is investigated by simulation and experiments. The numerical minimization simulation method is utilized to ca...The capillary force of a liquid bridge with a pinned contact line between a small disk and a parallel plate is investigated by simulation and experiments. The numerical minimization simulation method is utilized to calculate the capillary force. The results show excellent agreement with the Young-Laplace equation method. An experimental setup is built to measure the capillary force. The experimental results indicate that the simulation results agree well with the measured forces at large separation distances, while some deviation may occur due to the transition from the advancing contact angle to the receding one at small distances. It is also found that the measured rupture distance is slightly larger than the simulation value due to the effect of the viscous interaction inside the liquid bridge.展开更多
基金Supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China under Grant No 51521003the Self-Planned Task of State Key Laboratory of Robotics and System under Grant No SKLRS201501A04
文摘The capillary force of a liquid bridge with a pinned contact line between a small disk and a parallel plate is investigated by simulation and experiments. The numerical minimization simulation method is utilized to calculate the capillary force. The results show excellent agreement with the Young-Laplace equation method. An experimental setup is built to measure the capillary force. The experimental results indicate that the simulation results agree well with the measured forces at large separation distances, while some deviation may occur due to the transition from the advancing contact angle to the receding one at small distances. It is also found that the measured rupture distance is slightly larger than the simulation value due to the effect of the viscous interaction inside the liquid bridge.