期刊文献+
共找到4,516篇文章
< 1 2 226 >
每页显示 20 50 100
Galerkin-based quasi-smooth manifold element(QSME)method for anisotropic heat conduction problems in composites with complex geometry
1
作者 Pan WANG Xiangcheng HAN +2 位作者 Weibin WEN Baolin WANG Jun LIANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期137-154,共18页
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ... The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations. 展开更多
关键词 anisotropic heat conduction quasi-smooth manifold element(QSME) composite with complex geometry numerical simulation finite element method(FEM)
下载PDF
DEFORMATION ANALYSIS OF SHEET METAL SINGLE-POINT INCREMENTAL FORMING BY FINITE ELEMENT METHOD SIMULATION 被引量:3
2
作者 MA Linwei MO Jianhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第1期31-35,共5页
Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation a... Single-point incremental forming (SPIF) is an innovational sheet metal forming method without dedicated dies, which belongs to rapid prototyping technology. In generalizing the SPIF of sheet metal, the deformation analysis on forming process becomes an important and useful method for the planning of shell products, the choice of material, the design of the forming process and the planning of the forming tool. Using solid brick elements, the finite element method(FEM) model of truncated pyramid was established. Based on the theory of anisotropy and assumed strain formulation, the SPIF processes with different parameters were simulated. The resulted comparison between the simulations and the experiments shows that the FEM model is feasible and effective. Then, according to the simulated forming process, the deformation pattern of SPIF can be summarized as the combination of plane-stretching deformation and bending deformation. And the study about the process parameters' impact on deformation shows that the process parameter of interlayer spacing is a dominant factor on the deformation. Decreasing interlayer spacing, the strain of one step decreases and the formability of blank will be improved. With bigger interlayer spacing, the plastic deformation zone increases and the forming force will be bigger. 展开更多
关键词 Sheet metal incremental forming DEFORMATION finite element method(FEM) Numerical simulation
下载PDF
Treatment of discontinuous interface in liquid-solid forming with extended finite element method 被引量:1
3
作者 周计明 齐乐华 《中国有色金属学会会刊:英文版》 CSCD 2010年第S3期911-915,共5页
Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming... Extended finite element method(XFEM) is proposed to simulate the discontinuous interface in the liquid-solid forming process.The discontinuous interface is an important phenomenon happening in the liquid-solid forming processes and it is difficult to be simulated accurately with conventional finite element method(CFEM) because it involves solid phase and liquid phase simultaneously.XFEM is becoming more and more popular with the need of solving the discontinuous problem happening in engineering field.The implementation method of XFEM is proposed on Abaqus code by using UEL(user element) with the flowchart.The key is to modify the element stiffness in the proposed method by using UEL on the platform of Abaqus code.In contrast to XFEM used in the simulation of solidification,the geometrical and physical properties of elements were modified at the same time in our method that is beneficial to getting smooth interface transition and precise analysis results.The analysis is simplified significantly with XFEM. 展开更多
关键词 EXTENDED finite element method SOLID metal with liquid phase numerical simulation
下载PDF
Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method 被引量:9
4
作者 Qi Zhao Andrea Lisjak +2 位作者 Omid Mahabadi Qinya Liu Giovanni Grasselli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第6期574-581,共8页
Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid ... Hydraulic fracturing (HF) technique has been extensively used for the exploitation of unconventional oiland gas reservoirs. HF enhances the connectivity of less permeable oil and gas-bearing rock formationsby fluid injection, which creates an interconnected fracture network and increases the hydrocarbonproduction. Meanwhile, microseismic (MS) monitoring is one of the most effective approaches to evaluatesuch stimulation process. In this paper, the combined finite-discrete element method (FDEM) isadopted to numerically simulate HF and associated MS. Several post-processing tools, includingfrequency-magnitude distribution (b-value), fractal dimension (D-value), and seismic events clustering,are utilized to interpret numerical results. A non-parametric clustering algorithm designed specificallyfor FDEM is used to reduce the mesh dependency and extract more realistic seismic information.Simulation results indicated that at the local scale, the HF process tends to propagate following the rockmass discontinuities; while at the reservoir scale, it tends to develop in the direction parallel to themaximum in-situ stress. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Hydraulic fracturing(HF) Numerical simulation Microseismic(MS) finite-discrete element method(FDEM) Clustering Kernel density estimation(KDE)
下载PDF
Application of Wavelet Finite Element Method to Simulation of the Temperature Field of Copier Paper 被引量:1
5
作者 YANGSheng-jun MAJun-xing 《International Journal of Plant Engineering and Management》 2002年第4期191-197,共7页
Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copie... Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copier paper is moving through the fusing rollers. By means of conventional shaft elements, the high gradient temperature variety causes the oscillation of the numerical solution. Based on the Daubechies scaling functions, a kind of wavelet based element is constructed for the above problem. The temperature field of the copier paper moving through the fusing rollers is simulated using the two methods. Comparison of the results shows the advantages of the wavelet finite element method, which provides a new method for improving the copier properties. 展开更多
关键词 copier paper temperature field wavelet finite element method SIMULATION
下载PDF
Nonlinear simulation of arch dam cracking with mixed finite element method
6
作者 Ren Hao Li Tongchun Chen Huifang Zhao Lanhao 《Water Science and Engineering》 EI CAS 2008年第2期88-101,共14页
This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and... This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking. 展开更多
关键词 mixed finite element method contact pair nodes crack of arch dam SIMULATION thermal stress
下载PDF
Modeling and Simulation of Valve Cycle in Vein Using an Immersed Finite Element Method
7
作者 Xiang Liu Liangbo Sun +2 位作者 Mingzhen Wang Bin Li Lisheng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第4期153-183,共31页
A vein model was established to simulate the periodic characteristics of blood flow and valve deformation in blood-induced valve cycles.Using an immersed finite element method which was modified by a ghost fluid techn... A vein model was established to simulate the periodic characteristics of blood flow and valve deformation in blood-induced valve cycles.Using an immersed finite element method which was modified by a ghost fluid technique,the interaction between the vein and blood was simulated.With an independent solid solver,the contact force between vein tissues was calculated using an adhesive contact method.A benchmark simulation of the normal valve cycle validated the proposed model for a healthy vein.Both the opening orifice and blood flow rate agreed with those in the physiology.Low blood shear stress and maximum leaflet stress were also seen in the base region of the valve.On the basis of the healthy model,a diseased vein model was subsequently built to explore the sinus lesions,namely,fibrosis and atrophy which are assumed stiffening and softening of the sinus.Our results showed the opening orifice of the diseased vein was inversely proportional to the corresponding modulus of the sinus.A drop in the transvalvular pressure gradient resulted from the sinus lesion.Compared to the fibrosis,the atrophy of the sinus apparently improved the vein deformability but simultaneously accelerated the deterioration of venous disease and increased the risk of potential fracture.These results provide understandings of the normal/abnormal valve cycle in vein,and can be also helpful for the prosthesis design. 展开更多
关键词 Numerical simulation fluid-structure interaction immersed finite element method adhesive contact method bio-mechanics venous valve.
下载PDF
Finite element method simulation for tensile process of sintered iron-base material
8
作者 赵伟斌 李元元 +3 位作者 周照耀 邵明 陈维平 张文 《中国有色金属学会会刊:英文版》 CSCD 2002年第6期1099-1102,共4页
Different material properties leads to different metal fracture behaviors. Even if the powder material is composed of plastic metal, the fracture still does not show macroscopic plastic deformation characteristics if ... Different material properties leads to different metal fracture behaviors. Even if the powder material is composed of plastic metal, the fracture still does not show macroscopic plastic deformation characteristics if the material contains a large number of voids. Eight node isoparametric elastic plastic finite element method was used to simulate the tensile process of sintered powder material. By setting a number of voids in the analyzed metal cuboid, the initial density was taken into consideration. The material properties of the three dimensional solid for the tensile simulation were defined with reference to the known pure iron material parameters. The load displacement curves during elongation were obtained with a universal testing machine, and then the simulated curves were compared with the experimental results. The factors that cause the stress concentration and strength decrease were analyzed according to the simulated equivalent von Mises stress distribution. 展开更多
关键词 有限元方法模拟 张力 粉末烧结 离子基材料
下载PDF
Finite element method simulation of shotpeening wing skin panel
9
作者 吴为 曾元松 +1 位作者 黄遐 李志强 《中国有色金属学会会刊:英文版》 CSCD 2005年第2期443-446,共4页
Finite element method(FEM) was used to simulate the forming process of shotpeening the wing skin panel. Experiment of shotpeeing the wing skin panel was carried out. The results show that equivalent deformation in sho... Finite element method(FEM) was used to simulate the forming process of shotpeening the wing skin panel. Experiment of shotpeeing the wing skin panel was carried out. The results show that equivalent deformation in shotpeening process can be obtained using the elongation and bending result caused by thermal stress that is induced by applying temperature load on the surface of the part. Deformation of the part in the shotpeeing process can be analyzed using this method. The parameters and their relationships are identified. 展开更多
关键词 喷丸硬化成型 边皮平行 有限元法 计算机仿真
下载PDF
Mixed Finite Volume Element Method for Vibration Equations of Beam with Structural Damping
10
作者 Tongxin Wang Ziwen Jiang Zhe Yin 《American Journal of Computational Mathematics》 2021年第3期207-225,共19页
<span style="font-family:Verdana;">In this paper, for the initial and boundary value problem of beams with</span> <span style="font-family:Verdana;">structural damping, by introdu... <span style="font-family:Verdana;">In this paper, for the initial and boundary value problem of beams with</span> <span style="font-family:Verdana;">structural damping, by introducing intermediate variables, the original </span><span style="font-family:Verdana;">fourth-order problem is transformed into second-order partial differential equations, and the mixed finite volume element scheme is constructed, and the existence, uniqueness and convergence of the scheme are analyzed</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span><span><span style="font-family:Verdana;"> Numerical examples are provided to confirm the theoretical results. In the end, we test the value of <em>δ</em></span><span style="font-family:Verdana;"> to observe its influence on the model.</span></span></span> 展开更多
关键词 Vibration Equations Structural Damping Mixed finite Volume element method Error Estimation Numerical Simulation
下载PDF
Application of Finite Elements Method for Structural Analysis in a Coffee Harvester
11
作者 Evandro Pereira da Silva Fabio Moreira da Silva Ricardo Rodrigues Magalhaes 《Engineering(科研)》 2014年第3期138-147,共10页
Stress concentration and large displacements are usual problems in the components of the structure of agricultural machinery such harvesters coffee, and that finite element method (FEM) can be a tool to minimize its e... Stress concentration and large displacements are usual problems in the components of the structure of agricultural machinery such harvesters coffee, and that finite element method (FEM) can be a tool to minimize its effects. The goal of this paper is to get results of stresses and displacements of a coffee harvester structure by using FEM for static simulation. The main parts of the coffee harvester analyzed were: engine frame, body right and left sides, front and rear end, main beam, coffee reservoir, wheels and fuel tank. Two different design concepts of a coffee harvester machine were analyzed (structure with rear wheels aligned and misaligned) and the results were compared. It was observed that the model with rear wheels misaligned showed maximum displacement lower than the model with rear wheels aligned. Although higher stress was found in the rear wheels misaligned, it was observed that average stresses for the misaligned wheels design were lower in most structural components analyzed. Based on FEM results, the coffee harvester machine with misaligned rear wheels was built and subjected to operational tests without showing any structural failure. 展开更多
关键词 finite elements method Stress Concentration Static Simulation Coffee Harvester
下载PDF
A Study on the Computer Numerical Simulation of Radial Keratotomy by Finite Element Method
12
《Chinese Journal of Biomedical Engineering(English Edition)》 1999年第4期120-121,共2页
关键词 SIMULATION A Study on the Computer Numerical Simulation of Radial Keratotomy by finite element method
下载PDF
A multithreaded parallel upwind sweep algorithm for the S_(N) transport equations discretized with discontinuous finite elements
13
作者 Zhi‑Wei Zong Mao‑Song Cheng +1 位作者 Ying‑Chi Yu Zhi‑Min Dai 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第12期229-241,共13页
The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can ov... The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations. 展开更多
关键词 Shielding calculation Discrete ordinates method Discontinuous Galerkin finite element method Unstructured meshes
下载PDF
Adaptive discontinuous finite element quadrature sets over an icosahedron for discrete ordinates method 被引量:2
14
作者 Ni Dai Bin Zhang +1 位作者 Yi-Xue Chen Dao-Gang Lu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第9期94-104,共11页
The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in... The discrete ordinates(S N)method requires numerous angular unknowns to achieve the desired accu-racy for shielding calculations involving strong anisotropy.Our objective is to develop an angular adaptive algorithm in the S N method to automatically optimize the angular distribution and minimize angular discretization errors with lower expenses.The proposed method enables linear dis-continuous finite element quadrature sets over an icosahe-dron to vary their quadrature orders in a one-twentieth sphere so that fine resolutions can be applied to the angular domains that are important.An error estimation that operates in conjunction with the spherical harmonics method is developed to determine the locations where more refinement is required.The adaptive quadrature sets are applied to three duct problems,including the Kobayashi benchmarks and the IRI-TUB research reactor,which emphasize the ability of this method to resolve neutron streaming through ducts with voids.The results indicate that the performance of the adaptive method is more effi-cient than that of uniform quadrature sets for duct transport problems.Our adaptive method offers an appropriate placement of angular unknowns to accurately integrate angular fluxes while reducing the computational costs in terms of unknowns and run times. 展开更多
关键词 Shielding calculation Discrete ordinates method Angular adaptivity Discontinuous finite element
下载PDF
Flow simulation considering adsorption boundary layer based on digital rock and finite element method 被引量:1
15
作者 Yong-Fei Yang Ke Wang +7 位作者 Qian-Fei Lv Roohollah Askari Qing-Yan Mei Jun Yao Jie-Xin Hou Kai Zhang Ai-Fen Li Chen-Chen Wang 《Petroleum Science》 SCIE CAS CSCD 2021年第1期183-194,共12页
Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,compara... Due to the low permeability of tight reservoirs,throats play a significant role in controlling fluid flow.Although many studies have been conducted to investigate fluid flow in throats in the microscale domain,comparatively fewer works have been devoted to study the effect of adsorption boundary layer(ABL)in throats based on the digital rock method.By considering an ABL,we investigate its effects on fluid flow.We build digital rock model based on computed tomography technology.Then,microscopic pore structures are extracted with watershed segmentation and pore geometries are meshed through Delaunay triangulation approach.Finally,using the meshed digital simulation model and finite element method,we investigate the effects of viscosity and thickness of ABL on microscale flow.Our results demonstrate that viscosity and thickness of ABL are major factors that significantly hinder fluid flow in throats. 展开更多
关键词 Digital rock Low-permeability rocks CT technology Adsorption boundary layer Numerical simulation finite element method
下载PDF
Seismic Wavelet Analysis Based on Finite Element Numerical Simulation
16
作者 Junguo Du Jun Wu +2 位作者 Longjiang Jing Shuqin Li Qiang Zhang 《Journal of Geoscience and Environment Protection》 2023年第6期220-228,共9页
The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a nume... The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a numerical model of the explosion in the well, using finite element analysis technology for numerical simulation, the simulation calculated the stress structure in the near-source area of the earthquake excitation, and extracted the seismic wavelet. The results show that the simulation seismic wavelet characteristics of different thin interbedded sand and mudstone structures have changed significantly. Through excitation simulation, the amplitude and spectrum information of seismic wavelets can be compared and analyzed, and the excitation parameters can be optimized. . 展开更多
关键词 finite element method Seismic Wavelet Numerical Simulation Thin Interbed
下载PDF
3D Finite Element Simulation of Tunnel Boring Machine Construction Processes in Deep Water Conveyance Tunnel 被引量:3
17
作者 钟登华 佟大威 《Transactions of Tianjin University》 EI CAS 2009年第2期101-107,共7页
Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav... Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability. 展开更多
关键词 三维有限元模拟 隧道掘进机 输水隧洞 施工工艺 三维非线性有限元法 应力应变场 带状分布 TBM施工
下载PDF
Physics-based seismic analysis of ancient wood structure:fault-to-structure simulation
18
作者 Ba Zhenning Fu Jisai +3 位作者 Wang Fangbo Liang Jianwen Zhang Bin Zhang Long 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期727-740,共14页
Based on the domain reduction method,this study employs an SEM-FEM hybrid workflow which integrates the advantages of the spectral element method(SEM)for flexible and highly efficient simulation of seismic wave propag... Based on the domain reduction method,this study employs an SEM-FEM hybrid workflow which integrates the advantages of the spectral element method(SEM)for flexible and highly efficient simulation of seismic wave propagation in a three-dimensional(3D)regional-scale geophysics model and the finite element method(FEM)for fine simulation of structural response including soil-structure interaction,and performs a physics-based simulation from initial fault rupture on an ancient wood structure.After verification of the hybrid workflow,a large-scale model of an ancient wood structure in the Beijing area,The Tower of Buddhist Incense,is established and its responses under the 1665 Tongxian earthquake and the 1730 Yiheyuan earthquake are simulated.The results from the simulated ground motion and seismic response of the wood structure under the two earthquakes demonstrate that this hybrid workflow can be employed to efficiently provide insight into the relationships between geophysical parameters and the structural response,and is of great significance toward accurate input for seismic simulation of structures under specific site and fault conditions. 展开更多
关键词 spectral element method finite element method fault-to-structure simulation physical model domain reduction method
下载PDF
Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method 被引量:2
19
作者 Dun-ming Liao Liu Cao +4 位作者 Tao Chen Fei Sun Yong-zhen Jia Zi-hao Teng Yu-long Tang 《China Foundry》 SCIE 2016年第2期123-132,共10页
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo... For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process. 展开更多
关键词 辐射传热模型 凝固过程 有限元法 涡轮叶片 高温合金 换热模型 仿真结果 矩阵和
下载PDF
Simulation of bulk metal forming processes using one-step finite element approach based on deformation theory of plasticity 被引量:2
20
作者 王鹏 董湘怀 傅立军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第2期276-282,共7页
The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/stra... The bulk metal forming processes were simulated by using a one-step finite element(FE)approach based on deformation theory of plasticity,which enables rapid prediction of final workpiece configurations and stress/strain distributions.This approach was implemented to minimize the approximated plastic potential energy derived from the total plastic work and the equivalent external work in static equilibrium,for incompressibly rigid-plastic materials,by FE calculation based on the extremum work principle.The one-step forward simulations of compression and rolling processes were presented as examples,and the results were compared with those obtained by classical incremental FE simulation to verify the feasibility and validity of the proposed method. 展开更多
关键词 有限元方法 过程模拟 塑性变形 金属成形 基础 变形理论 散装 刚塑性材料
下载PDF
上一页 1 2 226 下一页 到第
使用帮助 返回顶部