Regarding the growth of global energy consumption and the paucity of light crude oil, extracting and using heavy and extra heavy crude oil has received much more attention, but the application of this kind of oil is c...Regarding the growth of global energy consumption and the paucity of light crude oil, extracting and using heavy and extra heavy crude oil has received much more attention, but the application of this kind of oil is complicated due to its very high molecular weight. High viscosity and low flowability complicate the transportation of heavy and extra heavy crude oil. Accordingly, it is essential to reduce the viscosity of heavy and extra heavy crude oil through in-situ operations or immediate actions after extraction to reduce costs. Numerical simulations are influential methods, because they reduce calculation time and costs. In this study, the cracking of extra heavy crude oil using computational fluid dynamics is simulated, and a unique kinetic model is proposed based on experimental procedures to predict the behavior of extra heavy crude oil cracking reaction. Moreover, the hydrodynamics and heat transfer of the system and influence of nanocatalysts and temperature on the upgrading of crude oil are studied. The geometry of a reactor is produced using commercial software, and some experiments are performed to examine the validity and accuracy of the numerical results. The findings reveal that there is a good agreement between the numerical and experimental results. Furthermore, to investigate the main factors affecting the process, sensitivity analysis is adopted. Results show that type of catalyst and concentration of catalyst are the parameters that influence the viscosity reduction of extra heavy crude oil the most. The findings further revealed that when using a 25 nm SiO_2 nanocatalyst, a maximum viscosity reduction of 98.67% is observed at 623 K. Also, a catalyst concentration of 2.28 wt% is best for upgrading extra heavy crude oil. The results obtained through sensitivity analysis, simulation model, and experiments represent effectual information for the design and development of high performance upgrading processes for energy applications.展开更多
Krylov subspace projection methods are known to be highly efficient for solving large linear systems. Many different versions arise from different choices to the left and right subspaces. These methods were classified...Krylov subspace projection methods are known to be highly efficient for solving large linear systems. Many different versions arise from different choices to the left and right subspaces. These methods were classified into two groups in terms of the different forms of matrix H-m, the main properties in applications and the new versions of these two types of methods were briefly reviewed, then one of the most efficient versions, GMRES method was applied to oil reservoir simulation. The block Pseudo-Elimination method was used to generate the preconditioned matrix. Numerical results show much better performance of this preconditioned techniques and the GMRES method than that of preconditioned ORTHMIN method, which is now in use in oil reservoir simulation. Finally, some limitations of Krylov subspace methods and some potential improvements to this type of methods are further presented.展开更多
Laboratory experiments were conducted to simulate oil weathering process, a medium to long term weathering process for 210-d, using samples collected from five different oil resources. Based on relative deviation and ...Laboratory experiments were conducted to simulate oil weathering process, a medium to long term weathering process for 210-d, using samples collected from five different oil resources. Based on relative deviation and repeatability limit analysis about indexes of these samples, the results show there had been significant changes in diagnostic ratios among the initial and weathered samples of different oils during this process. Changes of selected n-alkane diagnostic ratios of all oil samples displayed more obviously than diagnostic ratios of terpanes,steranes and PAHs in this process. Almost all selected diagnostic ratios of terpanes, steranes and PAHs can be efficiently used in tracking sources of hydrocarbon pollution, differentiating from the n-alkane diagnostic ratios.In these efficient diagnostic ratios, only four ratios maintained good stability in the weathering processes and are more suitable because their relative deviation(RSD) are lower than 5%.展开更多
In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,...In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,visualization of massive and multidimensional marine data,and imitation of marine lives.VV-Ocean is composed of five modules,i.e.memory management module,resources management module,scene management module,rendering process management module and interaction management module.There are three core functions in VV-Ocean:reconstructing vivid virtual ocean scenes,visualizing real data dynamically in real time,imitating and simulating marine lives intuitively.Based on VV-Ocean,we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface.Environment factors such as ocean current and wind field have been considered in this simulation.On this platform oil spilling process can be abstracted as movements of abundant oil particles.The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering.VV-Ocean can be widely used in ocean applications such as demonstrating marine operations,facilitating maritime communications,developing ocean games,reducing marine hazards,forecasting the weather over oceans,serving marine tourism,and so on.Finally,further technological improvements of VV-Ocean are discussed.展开更多
For the system of multilayer dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some techniques, such as calculus ...For the system of multilayer dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources.展开更多
Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction.In this kind of fluids,two phenomena named negative inertia and positive coupling...Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction.In this kind of fluids,two phenomena named negative inertia and positive coupling,become significant in the high velocity zone around the wellbore.In this study,a modified black oil simulator is developed that take into account the velocity dependent relative permeability.Against the industrial simulator that assumes linear variation of transmissibilities by pressure,modified black oil nonlinear equations are solved directly without linearization.The developed code is validated by ECLIPSE simulator.The behavior of two real gas condensate fluids,a lean and a rich one,are compared with each other.For each fluid,simulations of PVT experiments are carried out to calculate black oil property applying Coats approach for gas condensate fluids.For both fluids,the proposed models for gas condensate velocity dependent relative permeability show different influence of velocity on relative permeability in the same conditions.Moreover,it is observed that higher flow rate of gas production leads to more condensate production during constant rate well testing.展开更多
基金Supported by the Iranian National Science Foundation(INSF)under grant number91042428
文摘Regarding the growth of global energy consumption and the paucity of light crude oil, extracting and using heavy and extra heavy crude oil has received much more attention, but the application of this kind of oil is complicated due to its very high molecular weight. High viscosity and low flowability complicate the transportation of heavy and extra heavy crude oil. Accordingly, it is essential to reduce the viscosity of heavy and extra heavy crude oil through in-situ operations or immediate actions after extraction to reduce costs. Numerical simulations are influential methods, because they reduce calculation time and costs. In this study, the cracking of extra heavy crude oil using computational fluid dynamics is simulated, and a unique kinetic model is proposed based on experimental procedures to predict the behavior of extra heavy crude oil cracking reaction. Moreover, the hydrodynamics and heat transfer of the system and influence of nanocatalysts and temperature on the upgrading of crude oil are studied. The geometry of a reactor is produced using commercial software, and some experiments are performed to examine the validity and accuracy of the numerical results. The findings reveal that there is a good agreement between the numerical and experimental results. Furthermore, to investigate the main factors affecting the process, sensitivity analysis is adopted. Results show that type of catalyst and concentration of catalyst are the parameters that influence the viscosity reduction of extra heavy crude oil the most. The findings further revealed that when using a 25 nm SiO_2 nanocatalyst, a maximum viscosity reduction of 98.67% is observed at 623 K. Also, a catalyst concentration of 2.28 wt% is best for upgrading extra heavy crude oil. The results obtained through sensitivity analysis, simulation model, and experiments represent effectual information for the design and development of high performance upgrading processes for energy applications.
文摘Krylov subspace projection methods are known to be highly efficient for solving large linear systems. Many different versions arise from different choices to the left and right subspaces. These methods were classified into two groups in terms of the different forms of matrix H-m, the main properties in applications and the new versions of these two types of methods were briefly reviewed, then one of the most efficient versions, GMRES method was applied to oil reservoir simulation. The block Pseudo-Elimination method was used to generate the preconditioned matrix. Numerical results show much better performance of this preconditioned techniques and the GMRES method than that of preconditioned ORTHMIN method, which is now in use in oil reservoir simulation. Finally, some limitations of Krylov subspace methods and some potential improvements to this type of methods are further presented.
基金The National Natural Science Foundation of China under contract No.41206089Project of on-site sediment microbial remediation of public area of central Bohai Sea,North China Sea Branch of State Oceanic Administration under contract No.QDZC20150420-002Program of Science and Technology Service Network Initiative,Chinese Academy of Sciences under contract No.KFJ-EW-STS-127
文摘Laboratory experiments were conducted to simulate oil weathering process, a medium to long term weathering process for 210-d, using samples collected from five different oil resources. Based on relative deviation and repeatability limit analysis about indexes of these samples, the results show there had been significant changes in diagnostic ratios among the initial and weathered samples of different oils during this process. Changes of selected n-alkane diagnostic ratios of all oil samples displayed more obviously than diagnostic ratios of terpanes,steranes and PAHs in this process. Almost all selected diagnostic ratios of terpanes, steranes and PAHs can be efficiently used in tracking sources of hydrocarbon pollution, differentiating from the n-alkane diagnostic ratios.In these efficient diagnostic ratios, only four ratios maintained good stability in the weathering processes and are more suitable because their relative deviation(RSD) are lower than 5%.
基金supported by the Global Change Research Program of China under Project 2012CB955603the Natural Science Foundation of China under Project 41076115+2 种基金the National Basic Research Program of China under Project 2009CB723903the Public Science and Technology Research Funds of the Ocean under Project 201005019the National High-Tech Research and Development Program of China under Project 2008AA121701
文摘In this study,a 3D virtual reality and visualization engine for rendering the ocean,named VV-Ocean,is designed for marine applications.The design goals of VV-Ocean aim at high fidelity simulation of ocean environment,visualization of massive and multidimensional marine data,and imitation of marine lives.VV-Ocean is composed of five modules,i.e.memory management module,resources management module,scene management module,rendering process management module and interaction management module.There are three core functions in VV-Ocean:reconstructing vivid virtual ocean scenes,visualizing real data dynamically in real time,imitating and simulating marine lives intuitively.Based on VV-Ocean,we establish a sea-land integration platform which can reproduce drifting and diffusion processes of oil spilling from sea bottom to surface.Environment factors such as ocean current and wind field have been considered in this simulation.On this platform oil spilling process can be abstracted as movements of abundant oil particles.The result shows that oil particles blend with water well and the platform meets the requirement for real-time and interactive rendering.VV-Ocean can be widely used in ocean applications such as demonstrating marine operations,facilitating maritime communications,developing ocean games,reducing marine hazards,forecasting the weather over oceans,serving marine tourism,and so on.Finally,further technological improvements of VV-Ocean are discussed.
基金Project supported by the Major State Basic Research Program of China (No.G1999032803)the National Tackling Key Problems Program (No.20050200069)the National Natural Science Foundation of China (Nos.10372052,10271066)the Doctoral Foundation of Ministry of Education of China(No.20030422047)
文摘For the system of multilayer dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources.
文摘Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction.In this kind of fluids,two phenomena named negative inertia and positive coupling,become significant in the high velocity zone around the wellbore.In this study,a modified black oil simulator is developed that take into account the velocity dependent relative permeability.Against the industrial simulator that assumes linear variation of transmissibilities by pressure,modified black oil nonlinear equations are solved directly without linearization.The developed code is validated by ECLIPSE simulator.The behavior of two real gas condensate fluids,a lean and a rich one,are compared with each other.For each fluid,simulations of PVT experiments are carried out to calculate black oil property applying Coats approach for gas condensate fluids.For both fluids,the proposed models for gas condensate velocity dependent relative permeability show different influence of velocity on relative permeability in the same conditions.Moreover,it is observed that higher flow rate of gas production leads to more condensate production during constant rate well testing.