This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFT...This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFTS)held in Chengdu,China,27–30 October,2023.Progress in various fields has been achieved.For example,results on zonal flow generation by mode coupling,simulations of the key physics of divertor detachment,energetic particle effects on magnetohydrodynamic(MHD)modes in addition to ion-and electron-scale turbulence,physics of edge coherent modes and edge-localized modes,and the optimization of ion heating schemes as well as confinement scenarios using advanced integrated modeling are presented at the conference.In this conference,the scientific research groups were organized into six categories:(a)edge and divertor physics;(b)impurity,heating,and current drive;(c)energetic particle physics;(d)turbulent transport;(e)MHD instability;and(f)integrated modeling and code development.A summary of the highlighted progress in these working groups is presented.展开更多
This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.Th...This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.The conference focused on the latest progress in the research of the magnetic confined fusion plasma theory and simulations,as well as the largescale numerical simulation techniques developed in recent years.This conference is held both online and offline,with about 110 domestic participants from 18 institutes participating in the live conference,and the statistical data from the live broadcast platform indicated that the online conference attracted over 20000 views per day.A summary of the conference is given,and the history of the CMCFTS is presented.A brief introduction to the poster section is also included in this paper.展开更多
An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advan...An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques.展开更多
The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This a...The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.展开更多
To gain insight into the atomistic details of membrane fusion induced by fusogenic peptides, molecular dynamic simulations of synthetic peptides, derived from viral fusion proteins, contained in lipid bilayers were pe...To gain insight into the atomistic details of membrane fusion induced by fusogenic peptides, molecular dynamic simulations of synthetic peptides, derived from viral fusion proteins, contained in lipid bilayers were performed. A 20 amino acid peptide from the N-terminus of the influenza HA fusion peptide (WT20) assumed the oblique orientation at the interface between water and the membrane made up of dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA), as reported previously for different membranes. Simulations of WT20 embedded in bilayer membranes made up of dioleoylphos-phatidylethanolamine (DOPE) and DPPC/PA showed a positive curvature-inducing effect, whereas WT20 showed a negative curvature-inducing effect on a DPPC bilayer. In phase re-constitution analyses starting from a random mixture of DPPC, PA and water molecules, WT20 weakly stabilized an inverted hexagonal phase. In the latter analyses WT20 preferentially assumed a transmembrane orientation as opposed to the interfacial orientation, regardless of the phase to which the system settled (lamellar vs. inverted hexagonal). In another set of analyses using systems containing a water layer between the apposed DPPC/PA (and DOPE) monolayers, the behavior of WT20 during the formation of an intermembrane connection (or stalk) was examined. Comparison among the mutants supports a view that the oblique orientation of WT20 facilitates the perturbation of the lipid-water interface and the stalk formation. Taken together, these results imply that the influenza HA fusion peptide can have substantial effects on the membrane curvature and can assume a wide range of orientation/position in membranes depending on the local environment of the lipid/water system. Its movability and oblique orientation appear to be associated with its ability to perturb membrane/water interfaces.展开更多
The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,igno...The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,ignoring the influence of multiple motion units and the differences in various features among them,which strongly affect the efficiency and accuracy of the simulations.In this study,we constructed a flow field fusion simulation method based on model features by combining key motion unit analysis and various simulation methods and then applied the method to the CRDM simulation process.CRDM performs motion unit decomposition through the structural hierarchy of function-movement-action method,and the key meta-actions are identified as the nodes in the flow field simulation.We established a fused feature-based multimethod simulation process and processed the simulation methods and data according to the features of the fluid domain space and the structural complexity to obtain the fusion simulation results.Compared to traditional simulation methods and real measurements,the simulation method provides advantages in terms of simulation efficiency and accuracy.展开更多
<p> <span><span style="font-family:""><span style="font-family:Verdana;">Simulation (stochastic) methods are based on obtaining random samples </span><spa...<p> <span><span style="font-family:""><span style="font-family:Verdana;">Simulation (stochastic) methods are based on obtaining random samples </span><span style="color:#4F4F4F;font-family:Simsun;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana;">θ</span><sup><span style="font-family:Verdana;">5</span></sup></span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"> </span><span><span style="font-family:Verdana;"> </span><span><span style="font-family:Verdana;">from the desired distribution </span><em><span style="font-family:Verdana;">p</span></em><span style="font-family:Verdana;">(</span><span style="color:#4F4F4F;font-family:Verdana;white-space:normal;background-color:#FFFFFF;">θ</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">and estimating the expectation of any </span></span><span><span style="font-family:Verdana;">function </span><em><span style="font-family:Verdana;">h</span></em><span style="font-family:Verdana;">(</span><span style="color:#4F4F4F;font-family:Verdana;white-space:normal;background-color:#FFFFFF;">θ</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;">. Simulation methods can be used for high-dimensional dis</span></span><span style="font-family:Verdana;">tributions, and there are general algorithms which work for a wide variety of models. Markov chain Monte Carlo (MCMC) methods have been important </span><span style="font-family:Verdana;">in making Bayesian inference practical for generic hierarchical models in</span><span style="font-family:Verdana;"> small area estimation. Small area estimation is a method for producing reliable estimates for small areas. Model based Bayesian small area estimation methods are becoming popular for their ability to combine information from several sources as well as taking account of spatial prediction of spatial data. In this study, detailed simulation algorithm is given and the performance of a non-trivial extension of hierarchical Bayesian model for binary data under spatial misalignment is assessed. Both areal level and unit level latent processes were considered in modeling. The process models generated from the predictors were used to construct the basis so as to alleviate the problem of collinearity </span><span style="font-family:Verdana;">between the true predictor variables and the spatial random process. The</span><span style="font-family:Verdana;"> performance of the proposed model was assessed using MCMC simulation studies. The performance was evaluated with respect to root mean square error </span><span style="font-family:Verdana;">(RMSE), Mean absolute error (MAE) and coverage probability of corres</span><span style="font-family:Verdana;">ponding 95% CI of the estimate. The estimates from the proposed model perform better than the direct estimate.</span></span></span></span> </p> <p> <span></span> </p>展开更多
In order to solve the problem of low prediction accuracy when only vibration or oil signal is used to predict the remaining life of gear wear,a gear wear life feature fusion prediction method based on temporal pattern...In order to solve the problem of low prediction accuracy when only vibration or oil signal is used to predict the remaining life of gear wear,a gear wear life feature fusion prediction method based on temporal pattern attention mechanism is proposed.Firstly,deep residual shrinkage network(DRSN)is used to extract the features of the original vibration time series signals with low signal-tonoise ratio,and the vibration features associated with gear wear evolution are obtained.Secondly,the extracted vibration features and the oil monitoring data that can intuitively reflect the wear process information are jointly input into the bi-directional long short-term memory neural network based on temporal pattern attention mechanism(TPA-BiLSTM),the complex nonlinear relationship between vibration features,oil features and gear wear process evolution is further explored to improve the prediction accuracy.The gear life cycle dynamic response and wear process signals are obtained based on the gear numerical simulation model,and the feasibility of the proposed method is verified.Finally,the proposed method is applied to the residual life prediction of gear on a test bench,and the comparison between different methods proved the validity of the proposed method.展开更多
Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an applic...Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme.展开更多
China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the saf...China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.展开更多
文摘This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation(CMCFTS)held in Chengdu,China,27–30 October,2023.Progress in various fields has been achieved.For example,results on zonal flow generation by mode coupling,simulations of the key physics of divertor detachment,energetic particle effects on magnetohydrodynamic(MHD)modes in addition to ion-and electron-scale turbulence,physics of edge coherent modes and edge-localized modes,and the optimization of ion heating schemes as well as confinement scenarios using advanced integrated modeling are presented at the conference.In this conference,the scientific research groups were organized into six categories:(a)edge and divertor physics;(b)impurity,heating,and current drive;(c)energetic particle physics;(d)turbulent transport;(e)MHD instability;and(f)integrated modeling and code development.A summary of the highlighted progress in these working groups is presented.
基金supported by the National Magnetic Confinement Fusion Energy Research and Development Program of China(No.2019YFE03090100)。
文摘This paper gives a summary of the organization and the presentations delivered at the 10th Conference on Magnetically Confined Fusion Theory and Simulation(CMCFTS)held in Zhuhai,China,from 28th to 31st October 2022.The conference focused on the latest progress in the research of the magnetic confined fusion plasma theory and simulations,as well as the largescale numerical simulation techniques developed in recent years.This conference is held both online and offline,with about 110 domestic participants from 18 institutes participating in the live conference,and the statistical data from the live broadcast platform indicated that the online conference attracted over 20000 views per day.A summary of the conference is given,and the history of the CMCFTS is presented.A brief introduction to the poster section is also included in this paper.
文摘An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques.
基金project BK2001073 supported by Jiangsu Province Natural Science Foundation
文摘The concepts of information fusion and the basic principles of neural networks are introduced. Neural net-works were introduced as a way of building an information fusion model in a coal mine monitoring system. This assures the accurate transmission of the multi-sensor information that comes from the coal mine monitoring systems. The in-formation fusion mode was analyzed. An algorithm was designed based on this analysis and some simulation results were given. Finally,conclusions that could provide auxiliary decision making information to the coal mine dispatching officers were presented.
文摘To gain insight into the atomistic details of membrane fusion induced by fusogenic peptides, molecular dynamic simulations of synthetic peptides, derived from viral fusion proteins, contained in lipid bilayers were performed. A 20 amino acid peptide from the N-terminus of the influenza HA fusion peptide (WT20) assumed the oblique orientation at the interface between water and the membrane made up of dipalmitoylphosphatidylcholine (DPPC)/palmitic acid (PA), as reported previously for different membranes. Simulations of WT20 embedded in bilayer membranes made up of dioleoylphos-phatidylethanolamine (DOPE) and DPPC/PA showed a positive curvature-inducing effect, whereas WT20 showed a negative curvature-inducing effect on a DPPC bilayer. In phase re-constitution analyses starting from a random mixture of DPPC, PA and water molecules, WT20 weakly stabilized an inverted hexagonal phase. In the latter analyses WT20 preferentially assumed a transmembrane orientation as opposed to the interfacial orientation, regardless of the phase to which the system settled (lamellar vs. inverted hexagonal). In another set of analyses using systems containing a water layer between the apposed DPPC/PA (and DOPE) monolayers, the behavior of WT20 during the formation of an intermembrane connection (or stalk) was examined. Comparison among the mutants supports a view that the oblique orientation of WT20 facilitates the perturbation of the lipid-water interface and the stalk formation. Taken together, these results imply that the influenza HA fusion peptide can have substantial effects on the membrane curvature and can assume a wide range of orientation/position in membranes depending on the local environment of the lipid/water system. Its movability and oblique orientation appear to be associated with its ability to perturb membrane/water interfaces.
基金supported by the National Natural Science Foundation of China (No. 52075350)the Special City School Strategic Cooperation Project of Sichuan University and Zigong (No.2021CDZG-3)
文摘The control rod drive mechanism(CRDM)is an essential part of the control and safety protection system of pressurized water reactors.Current CRDM simulations are mostly performed collectively using a single method,ignoring the influence of multiple motion units and the differences in various features among them,which strongly affect the efficiency and accuracy of the simulations.In this study,we constructed a flow field fusion simulation method based on model features by combining key motion unit analysis and various simulation methods and then applied the method to the CRDM simulation process.CRDM performs motion unit decomposition through the structural hierarchy of function-movement-action method,and the key meta-actions are identified as the nodes in the flow field simulation.We established a fused feature-based multimethod simulation process and processed the simulation methods and data according to the features of the fluid domain space and the structural complexity to obtain the fusion simulation results.Compared to traditional simulation methods and real measurements,the simulation method provides advantages in terms of simulation efficiency and accuracy.
文摘<p> <span><span style="font-family:""><span style="font-family:Verdana;">Simulation (stochastic) methods are based on obtaining random samples </span><span style="color:#4F4F4F;font-family:Simsun;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana;">θ</span><sup><span style="font-family:Verdana;">5</span></sup></span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"> </span><span><span style="font-family:Verdana;"> </span><span><span style="font-family:Verdana;">from the desired distribution </span><em><span style="font-family:Verdana;">p</span></em><span style="font-family:Verdana;">(</span><span style="color:#4F4F4F;font-family:Verdana;white-space:normal;background-color:#FFFFFF;">θ</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">and estimating the expectation of any </span></span><span><span style="font-family:Verdana;">function </span><em><span style="font-family:Verdana;">h</span></em><span style="font-family:Verdana;">(</span><span style="color:#4F4F4F;font-family:Verdana;white-space:normal;background-color:#FFFFFF;">θ</span><span style="font-family:Verdana;"></span><span style="font-family:Verdana;">)</span><span style="font-family:Verdana;">. Simulation methods can be used for high-dimensional dis</span></span><span style="font-family:Verdana;">tributions, and there are general algorithms which work for a wide variety of models. Markov chain Monte Carlo (MCMC) methods have been important </span><span style="font-family:Verdana;">in making Bayesian inference practical for generic hierarchical models in</span><span style="font-family:Verdana;"> small area estimation. Small area estimation is a method for producing reliable estimates for small areas. Model based Bayesian small area estimation methods are becoming popular for their ability to combine information from several sources as well as taking account of spatial prediction of spatial data. In this study, detailed simulation algorithm is given and the performance of a non-trivial extension of hierarchical Bayesian model for binary data under spatial misalignment is assessed. Both areal level and unit level latent processes were considered in modeling. The process models generated from the predictors were used to construct the basis so as to alleviate the problem of collinearity </span><span style="font-family:Verdana;">between the true predictor variables and the spatial random process. The</span><span style="font-family:Verdana;"> performance of the proposed model was assessed using MCMC simulation studies. The performance was evaluated with respect to root mean square error </span><span style="font-family:Verdana;">(RMSE), Mean absolute error (MAE) and coverage probability of corres</span><span style="font-family:Verdana;">ponding 95% CI of the estimate. The estimates from the proposed model perform better than the direct estimate.</span></span></span></span> </p> <p> <span></span> </p>
基金Supported by the National Natural Science Foundation of China(No.52101343)the Aeronautical Science Foundation(ASFC)(No.201834S9002)Chongqing Technology Innovation and Application Development Special General Project(No.cstc2020jscx-msxm0411).
文摘In order to solve the problem of low prediction accuracy when only vibration or oil signal is used to predict the remaining life of gear wear,a gear wear life feature fusion prediction method based on temporal pattern attention mechanism is proposed.Firstly,deep residual shrinkage network(DRSN)is used to extract the features of the original vibration time series signals with low signal-tonoise ratio,and the vibration features associated with gear wear evolution are obtained.Secondly,the extracted vibration features and the oil monitoring data that can intuitively reflect the wear process information are jointly input into the bi-directional long short-term memory neural network based on temporal pattern attention mechanism(TPA-BiLSTM),the complex nonlinear relationship between vibration features,oil features and gear wear process evolution is further explored to improve the prediction accuracy.The gear life cycle dynamic response and wear process signals are obtained based on the gear numerical simulation model,and the feasibility of the proposed method is verified.Finally,the proposed method is applied to the residual life prediction of gear on a test bench,and the comparison between different methods proved the validity of the proposed method.
基金funded by CEA,EDF and Framatomefinancial and scientific support of CEA Cadarache.
文摘Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme.
基金the National Key R&D Program of China-National Magnetic Confinement Fusion Science Program(No.2017YFE0300305).
文摘China Fusion Engineering Test Reactor(CFETR)is China's self-designed and ongoing next-generation fusion reactor project.Tritium confinement systems in CFETR guarantee that the radiation level remains below the safety limit during tritium handling and operation in the fuel cycle system.Our tritium technology team is responsible for studying tritium transport behavior in the CFETR tritium safety confinement systems of the National Key R&D Program of China launched in 2017,and we are conducting CFETR tritium plant safety analysis by using CFD software.In this paper,the tritium migration and removal behavior were studied under a postulated accident condition for the Tokamak Exhaust Processing system of CFETR.The quantitative results of the transport behavior of tritium in the process room and glove box during the whole accident sequence(e.g.,tritium release,alarm,isolation,and tritium removal)have been presented.The results support the detailed design and engineering demonstration-related research of CFETR tritium plant.