期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Simultaneous nitrification and denitrification in step feeding biological nitrogen removal process 被引量:19
1
作者 ZHU Gui-bing PENG Yong-zhen +2 位作者 WU Shu-yun WANG Shu-ying XU Shi-wei 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第9期1043-1048,共6页
The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence... The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc. 展开更多
关键词 biological nitrogen removal dissolved oxygen floc size simultaneous nitrification and denitrification step feeding process
下载PDF
Simultaneous removal of nitrogen and phosphorus from swine wastewater in a sequencing batch biofilm reactor 被引量:3
2
作者 海热提 何一群 +1 位作者 王晓慧 李媛 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期303-308,共6页
In this study, the performance of a sequencing batch biofilm reactor(SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5% throughout the... In this study, the performance of a sequencing batch biofilm reactor(SBBR) for removal of nitrogen and phosphorus from swine wastewater was evaluated. The replacement rate of wastewater was set at 12.5% throughout the experiment. The anaerobic and aerobic times were 3 h and 7 h, respectively, and the dissolved oxygen concentration of the aerobic phase was about 3.95 mg·L-1. The SBBR process demonstrated good performance in treating swine wastewater. The percentage removal of total chemical oxygen demand(COD), ammonia nitrogen(NH4+-N), total nitrogen(TN), and total phosphorus(TP) was 98.2%, 95.7%, 95.6%, and 96.2% at effluent concentrations of COD85.6 mg·L-1, NH4+-N 35.22 mg·L-1, TN 44.64 mg·L-1, and TP 1.13 mg·L-1, respectively. Simultaneous nitrification and denitrification phenomenon was observed. Further improvement in removal efficiency of NH4+-N and TN occurred at COD/TN ratio of 11:1, with effluent concentrations at NH4+-N 18.5 mg·L-1and TN 34 mg·L-1, while no such improvement in COD and TP removal was found. Microbial electron microscopy analysis showed that the filler surface was covered with a thick biofilm, forming an anaerobic–aerobic microenvironment and facilitating the removal of nitrogen, phosphorus and organic matters. A long-term experiment(15 weeks) showed that stable removal efficiency for N and P could be achieved in the SBBR system. 展开更多
关键词 Sequencing batch biofilm reactor Swine wastewater simultaneous nitrogen and phosphorus removal
下载PDF
Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system 被引量:35
3
作者 PENG Yongzhen HOU Hongxun +2 位作者 WANG Shuying CUI Youwei Zhiguo Yuan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期398-403,共6页
To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was... To achieve high efficiency of nitrogen and phosphorus removal and to investigate the rule of simultaneous nitrification and denitrification phosphorus removal (SNDPR), a whole course of SNDPR damage and recovery was studied in a pilot-scale, anaerobicanoxic oxidation ditch (OD), where the volumes of anaerobic zone, anoxic zone, and ditches zone of the OD system were 7, 21, and 280 L, respectively. The reactor was fed with municipal wastewater with a flow rate of 336 L/d. The concept of simultaneous nitrification and denitrification (SND) rate (rSND) was put forward to quantify SND. The results indicate that: (1) high nitrogen and phosphorus removal efficiencies were achieved during the stable SND phase, total nitrogen (TN) and total phosphate (TP) removal rates were 80% and 85%, respectively; (2) when the system was aerated excessively, the stability of SND was damaged, and rSND dropped from 80% to 20% or less; (3) the natural logarithm of the ratio of NOx to NH4^+ in the effluent had a linear correlation to oxidation-reduction potential (ORP); (4) when NO3^- was less than 6 mg/L, high phosphorus removal efficiency could be achieved; (5) denitrifying phosphorus removal (DNPR) could take place in the anaerobic-anoxic OD system. The major innovation was that the SND rate was devised and quantified. 展开更多
关键词 oxidation ditch biological nitrogen removal biological phosphorus removal simultaneous nitrification and denitrification (SND) pilot scale municipal wastewater
下载PDF
Removal of nitrogen and phosphorus in a combined A^2/O-BAF system with a short aerobic SRT 被引量:15
4
作者 DING Yong-wei WANG Lin +1 位作者 WANG Bao-zhen WANG Zheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1082-1087,共6页
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobi... A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies. 展开更多
关键词 nitrogen and phosphorus removal denitrifying phosphorus removal denitrifying phosphorus accumulating organisms (DPAOs) anaerobic/anoxic/aerobic process (A^2/O) biological aerated filter (BAF) aerobic sludge retention time (SRT)
下载PDF
Insights into a novel nitrogen removal process based on simultaneous anammox and denitrification(SAD) following nitritation with in-situ NOB elimination 被引量:1
5
作者 Jing Chen Jia Zeng +6 位作者 Yiran He Shiquan Sun Haipeng Wu Yaoyu Zhou Zhenguo Chen Jianhui Wang Hong Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第3期160-170,共11页
Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study,... Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study, a lab-scale up-flow blanket filter(UBF) and zeolite sequence batch reactor(ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen(TN) removal efficiency of over 70% during the start-up stage(days 1–50), and reached a TN removal efficiency of 96%in the following 90 days(days 51–140) at COD/NH_(4)^(+)-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107copies/μL DNA;Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN(66.5% ± 4.5%)and COD(71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment. 展开更多
关键词 simultaneous anammox and DENITRIFICATION Up-flow blanket filter Zeolite sequence batch reactor biological nitrogen removal Wastewater treatment
原文传递
Enhanced Nutrient Removal with Upflow Biological Aerated Filter for Reclaimed Water
6
作者 王海东 彭永臻 +1 位作者 王淑莹 张艳萍 《Journal of Beijing Institute of Technology》 EI CAS 2007年第3期369-374,共6页
A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrific... A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2 mg/L, and total phosphorus of 0.3 mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrifieation. 展开更多
关键词 biological aerated filter NITRIFICATION DENITRIFICATION nitrogen and phosphorus removal reclaimed water
下载PDF
Response of aerobic sludge to AHL-mediated QS:Granulation,simultaneous nitrogen and phosphorus removal performance 被引量:4
7
作者 Jia Shuai Xiaoling Hu +5 位作者 Bin Wang Wanlin Lyu Rongfan Chen Wenbin Guo Hongyu Wang Dao Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第11期3402-3409,共8页
The effects of different species and concentrations’signal molecules on aerobic activated sludge system were investigated through batch experiments.Results showed that the fastest NH^(+)_(4)-N oxidization rate and th... The effects of different species and concentrations’signal molecules on aerobic activated sludge system were investigated through batch experiments.Results showed that the fastest NH^(+)_(4)-N oxidization rate and the most extracellular polymeric substances(EPS)secretion were obtained by adding 5 nmol/L N-hexanoyl-l-homoserine lactone(C_(6)-HSL)into the aerobic activated sludge.Further study investigated the correlation among N-acyl-homoserine lactones-mediated quorum sensing(AHLs-mediated QS),nutrient removal performances and microbial communities with the long-term addition of 5 nmol/L C_(6)-HSL.It was found that C_(6)-HSL-manipulation could enhance the stability and optimize the decontamination performance of aerobic granular sludge(AGS)system.Microbial compositions considerably shifted with long-term C_(6)-HSL-manipulation.Exogenous C_(6)-HSL-manipulation inhibited quorum quenching-related(QQ-related)activities and enhanced QS-related activities during the stable period.The proposed C_(6)-HSL-manipulation might be a potential technology to inhibit the growth of harmful bacteria in AGS,which could provide a theoretical foundation for the realization of more stable biological wastewater treatments. 展开更多
关键词 Quorum sensing(QS) Aerobic granular sludge(AGS) simultaneous nitrogen and phosphorus removal(SNDPR) N-acyl-homoserine lactones(AHLs) N-hexanoyl-L-homoserine lactone(C_(6)-HSL) nitrogen transformation
原文传递
Advanced nitrogen and phosphorus removal in A^(2)O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater 被引量:12
8
作者 Jianhua WANG Yongzhen PENG Yongzhi CHEN 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2011年第3期474-480,共7页
A laboratory-scale anaerobic-anoxic-aerobic process(A^(2)O)with a small aerobic zone and a bigger anoxic zone and biologic aerated filter(A^(2)O-BAF)system was operated to treat low carbon-to-nitrogen ratio domestic w... A laboratory-scale anaerobic-anoxic-aerobic process(A^(2)O)with a small aerobic zone and a bigger anoxic zone and biologic aerated filter(A^(2)O-BAF)system was operated to treat low carbon-to-nitrogen ratio domestic wastewater.The A^(2)O process was employed mainly for organic matter and phosphorus removal,and for denitrification.The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A^(2)O process,the suspended activated sludge in this A^(2)OBAF process contained small quantities of nitrifier,but nitrification overwhelmingly conducted in BAF.So the system successfully avoided the contradiction in sludge retention time(SRT)between nitrifying bacteria and phosphorus accumulating organisms(PAOs).Denitrifying phosphorus accumulating organisms(DPAOs)played an important role in removing up to 91%of phosphorus along with nitrogen,which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance.The average removal efficiency of chemical oxygen demand(COD),total nitrogen(TN),total phosphorus(TP),and NH_(4)^(+)-N were 85.56%,92.07%,81.24%and 98.7%respectively.The effluent quality consistently satisfied the national first level A effluent discharge standard of China.The average sludge volume index(SVI)was 85.4 mL·g^(-1)additionally,the volume ratio of anaerobic,anoxic and aerobic zone in A^(2)O process was also investigated,and the results demonstrated that the optimum value was 1:6:2. 展开更多
关键词 Anoxic zone and biologic aerated filter(A^(2)OBAF)system domestic wastewater with low carbon-tonitrogen ratio advanced nitrogen and phosphorus removal denitrifying phosphorus removal
原文传递
Research on polyhydroxyalkanoates and glycogen transformations: Key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems 被引量:3
9
作者 Hongjing LI Yinguang CHEN 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2011年第2期283-290,共8页
In this paper,a study was conducted on the effect of polyhydroxyalkanoates(PHA)and glycogen transformations on biologic nitrogen and phosphorus removal in low dissolved oxygen(DO)systems.Two laboratory-scale sequencin... In this paper,a study was conducted on the effect of polyhydroxyalkanoates(PHA)and glycogen transformations on biologic nitrogen and phosphorus removal in low dissolved oxygen(DO)systems.Two laboratory-scale sequencing batch reactors(SBR1 and SBR2)were operating with anaerobic/aerobic(low DO,0.15-0.45 mg·L^(-1))configurations,which cultured a propionic to acetic acid ratio(molar carbon ratio)of 1.0 and 2.0,respectively.Fewer poly-3-hydroxybutyrate(PHB),total PHA,and glycogen transformations were observed with the increase of propionic/acetic acid,along with more poly-3-hydroxyvalerate(PHV)and poly-3-hydroxy-2-methyvalerate(PH2MV)shifts.The total nitrogen(TN)removal efficiency was 68%and 82%in SBR1 and SBR2,respectively.In the two SBRs,the soluble ortho-phosphate(SOP)removal efficiency was 94%and 99%,and the average sludge polyphosphate(poly-P)content(g·g-MLVSS^(-1))was 8.3%and 10.2%,respectively.Thus,the propionic to acetic acid ratio of the influent greatly influenced the PHA form and quantity,glycogen transformation,and poly-P contained in activated sludge and further determined TN and SOP removal efficiency.Moreover,significant correlations between the SOP removal rate and the(PHV+PH2MV)/PHA ratio were observed(R^(2)>0.99).Accordingly,PHA and glycogen transformations should be taken into account as key components for optimizing anaerobic/aerobic(low DO)biologic nitrogen and phosphorus removal systems. 展开更多
关键词 low dissolved oxygen(DO) biological nitrogen and phosphorus removal polyhydroxyalkanoates(PHA) GLYCOGEN
原文传递
Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic–oxic process without internal recycle treating low strength wastewater 被引量:10
10
作者 Qibin Wang Qiuwen Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第1期175-183,共9页
Performance of a full-scale anoxic-oxic activated sludge treatment plant(4.0×10-5 m-3/day for the first-stage project) was followed during a year.The plant performed well for the removal of carbon,nitrogen and ... Performance of a full-scale anoxic-oxic activated sludge treatment plant(4.0×10-5 m-3/day for the first-stage project) was followed during a year.The plant performed well for the removal of carbon,nitrogen and phosphorus in the process of treating domestic wastewater within a temperature range of 10.8℃ to 30.5℃.Mass balance calculations indicated that COD utilization mainly occurred in the anoxic phase,accounting for 88.2% of total COD removal.Ammonia nitrogen removal occurred 13.71% in the anoxic zones and 78.77% in the aerobic zones.The contribution of anoxic zones to total nitrogen(TN) removal was 57.41%.Results indicated that nitrogen elimination in the oxic tanks was mainly contributed by simultaneous nitrification and denitrification(SND).The reduction of phosphorus mainly took place in the oxic zones,51.45% of the total removal.Denitrifying phosphorus removal was achieved biologically by 11.29%.Practical experience proved that adaptability to gradually changing temperature of the microbial populations was important to maintain the plant overall stability.Sudden changes in temperature did not cause paralysis of the system just lower removal efficiency,which could be explained by functional redundancy of microorganisms that may compensate the adverse effects of temperature changes to a certain degree.Anoxic-oxic process without internal recycling has great potential to treat low strength wastewater(i.e.,TN 〈 35 mg/L) as well as reducing operation costs. 展开更多
关键词 Wastewater treatment biological nutrient removal simultaneous nitrification and denitrification Denitrifying phosphorus removal
原文传递
填料对膜生物反应器处理高氨氮废水的影响 被引量:1
11
作者 王颖楠 郁金星 +3 位作者 刘克成 范辉 魏伟 沈瀚 《水处理技术》 CAS CSCD 北大核心 2023年第8期137-140,共4页
变电站高氨氮含量废水环境危害大,是水处理领域亟待解决的问题。在缺氧-好氧管式膜膜生物反应器建立短程硝化反硝化过程处理高氨氮含量废水,系统考察了膜生物反应器中聚氨酯填料投加的强化脱氮效果及对膜污染的控制。结果表明:填料可以... 变电站高氨氮含量废水环境危害大,是水处理领域亟待解决的问题。在缺氧-好氧管式膜膜生物反应器建立短程硝化反硝化过程处理高氨氮含量废水,系统考察了膜生物反应器中聚氨酯填料投加的强化脱氮效果及对膜污染的控制。结果表明:填料可以提高好氧池生物量,改善硝化过程,并通过填料内部的厌氧微环境实现同步硝化反硝化。在填料填充10%、回流比200%时,氨氮和总氮去除率达到92%和68%,同步硝化反硝化对总氮去除贡献约10%,膜清洗间隔可延长至11 d。 展开更多
关键词 生物脱氮 短程硝化反硝化 同步硝化反硝化 聚氨酯填料 膜生物反应器
下载PDF
一株耐盐异养硝化−好氧反硝化菌Rhodococcus sp.LS-2的分离鉴定与脱氮性能研究
12
作者 侯冬梅 张兰 +2 位作者 李春成 陈露童 邹建平 《南昌航空大学学报(自然科学版)》 CAS 2023年第3期50-58,102,共10页
高盐含氮废水通常采用生物法处理,但高盐带来的盐胁迫会影响淡水菌的脱氮性能,导致普通反硝化微生物难以有效脱氮。海洋微生物对盐浓度具有较高的耐受能力,可以用于高盐废水脱氮。本研究从深海底泥中富集筛选出一株耐盐的异养硝化−好氧... 高盐含氮废水通常采用生物法处理,但高盐带来的盐胁迫会影响淡水菌的脱氮性能,导致普通反硝化微生物难以有效脱氮。海洋微生物对盐浓度具有较高的耐受能力,可以用于高盐废水脱氮。本研究从深海底泥中富集筛选出一株耐盐的异养硝化−好氧反硝化细菌LS-2,利用生理生化实验及16S rRNA扩增子测序技术对其进行分类鉴定,并基于单因素实验探究不同环境因素对菌株生长及脱氮性能的影响。结果表明:经鉴定菌株LS-2为革兰氏阳性菌,隶属于红球菌属(Rhodococcus),其对盐的最大耐受浓度可高达6%。该菌株的最佳培养条件为:盐浓度为4%、C/N=15、初始氨氮浓度为120 mg/L、pH 7、30℃、140 r/min。在此条件下,菌株对氨氮的去除率为95.5%,且没有硝态氮与亚硝态氮的积累。该菌株具有良好的耐盐能力以及脱氮性能,在高盐含氮废水处理领域具有潜在的应用价值。 展开更多
关键词 生物脱氮 异养硝化 同步硝化反硝化 分离鉴定 脱氮特性
下载PDF
Enhancing the efficiency of nitrogen removing bacterial population to a wide range of C:N ratio(1.5:1 to 14:1)for simultaneous C&N removal
13
作者 Shaswati Saha Rohan Gupta +1 位作者 Shradhanjali Sethi Rima Biswas 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2022年第8期149-163,共15页
High C:N ratio in the wastewater limits biological nitrogen removal(BNR),especially in anammox based technologies.The present study attempts to improve the COD tolerance of the BNR process by associating methanogens w... High C:N ratio in the wastewater limits biological nitrogen removal(BNR),especially in anammox based technologies.The present study attempts to improve the COD tolerance of the BNR process by associating methanogens with nitrogen removing bacterial(NRB)populations.The new microbial system coined as‘Methammox’,was investigated for simultaneous removal of COD(C)and ammonia(N)at C:N ratio 1.5:1 to 14:1.The ammonia removal rate(11.5 mg N/g VSS/d)and the COD removal rates(70.6 mg O/g VSS/d)of Methammox was close to that of the NRB(11.1 mg N/g VSS/d)and the methanogenic populations(77.9 mg O/g VSS/d),respectively.The activities established that these two populations existed simultaneously and independently in‘Methammox’.Further studies in biofilm reactor fetched a balanced COD and ammonia removal(55%–60%)at a low C:N ratio(£2:1)and high C:N ratio(≥9:1).The population abundance of methanogens was reasonably constant,but the nitrogen removal shifted from mixotrophy to heterotrophy as the C:N ratio shifted from low(C:N£2:1)to high(C:N≥9:1).The reduced autotrophic NRB(ammonia-and nitrite-oxidizing bacteria and Anammox)population at a high C:N ratio was compensated by the fermentative group that could carry out denitrification heterotrophically.The functional plasticity of the Methammox system to adjust to a broad C:N ratio opens new frontiers in biological nitrogen removal of high COD containing wastewaters. 展开更多
关键词 METHANOGENS biological nitrogen removal(BNR) simultaneous Methammox C:N ratio
原文传递
SBR系统中同时硝化反硝化生物脱氮研究 被引量:20
14
作者 张龙 肖文德 +1 位作者 李伟 孙璐 《环境工程》 CAS CSCD 北大核心 2005年第4期29-32,共4页
采用单级SBR系统处理含有机物和氨氮的模拟污水并研究了单级生物脱氮的主要影响参数。实验采用葡萄糖作为碳源、硫酸铵作为氮源,研究了不同的CN和DO对同时硝化反硝化作用的影响。研究结果表明,当进水CODCr、NH3N浓度分别为244~500mgL和... 采用单级SBR系统处理含有机物和氨氮的模拟污水并研究了单级生物脱氮的主要影响参数。实验采用葡萄糖作为碳源、硫酸铵作为氮源,研究了不同的CN和DO对同时硝化反硝化作用的影响。研究结果表明,当进水CODCr、NH3N浓度分别为244~500mgL和45.4~52.2mgL、反应条件为DO=1.0~3.0mgL、CODCrNH3N=5~10时,反应器中CODCr、NH3N的去除率分别达到87.1%~91.0%、75.1%~94.7%。根据试验结果,对同时硝化反硝化过程的一个代表性周期进行了分析。 展开更多
关键词 生物脱氮 同时硝化反硝化 SBR系统 单级生物脱氮 CODCr NH3-N 反硝化作用 反硝化过程 影响参数 系统处理
下载PDF
一株异养硝化-好氧反硝化细菌的分离鉴定及脱氮活性研究 被引量:34
15
作者 邹艳艳 张宇 +3 位作者 李明智 梅荣武 韦彦斐 丁林贤 《中国环境科学》 EI CAS CSCD 北大核心 2016年第3期887-893,共7页
从杭州市天子生活岭垃圾填埋垃圾渗滤液调节池周围土壤样品中分离到一株异养硝化-好氧反硝化细菌ZB612,通过形态学观察及16S r DNA同源性分析,初步鉴定属于根瘤菌属(Rhizobium sp.).随后研究了该菌株的脱氮能力,结果表明在初始氨氮浓度... 从杭州市天子生活岭垃圾填埋垃圾渗滤液调节池周围土壤样品中分离到一株异养硝化-好氧反硝化细菌ZB612,通过形态学观察及16S r DNA同源性分析,初步鉴定属于根瘤菌属(Rhizobium sp.).随后研究了该菌株的脱氮能力,结果表明在初始氨氮浓度为100mg/L异养硝化培养基中,氨氮的去除效率达到90%,未出现明显的硝态氮和亚硝态氮积累,具有同步硝化反硝化特征;在亚硝酸盐反硝化体系中,亚硝态氮的去除效率达到60%.除此还考察了四种单因素(温度、p H值、碳氮比和碳源种类)分别对菌株ZB612脱氮效率的影响:该菌株的最佳脱氮条件为温度30oC,初始p H=7,C/N=8,以葡萄糖作为最适碳源. 展开更多
关键词 根瘤菌属 异养硝化-好养反硝化 生物脱氮 同步硝化反硝化
下载PDF
新型废水生物脱氮的微生物学研究进展 被引量:37
16
作者 闫志英 廖银章 +3 位作者 李旭东 刘晓风 袁月祥 宋丽 《应用与环境生物学报》 CAS CSCD 北大核心 2006年第2期292-296,共5页
生物脱氮是含氮废水处理公认的最佳处理方式,随着对生物脱氮微生物学原理研究的不断深入,许多新的生物脱氮特殊菌株或菌群及微生物转化机制不断被发现.本文在传统生物脱氮过程机理上,结合最近国内外生物脱氮的新发现,就短程硝化反硝化... 生物脱氮是含氮废水处理公认的最佳处理方式,随着对生物脱氮微生物学原理研究的不断深入,许多新的生物脱氮特殊菌株或菌群及微生物转化机制不断被发现.本文在传统生物脱氮过程机理上,结合最近国内外生物脱氮的新发现,就短程硝化反硝化、同时硝化反硝化、厌氧氨氧化的微生物学原理进行了阐述. 展开更多
关键词 生物脱氮 硝化作用 反硝化作用 短程硝化反硝化 同时硝化反硝化 厌氧氨氧化
下载PDF
溶解氧对分段进水生物脱氮工艺的影响 被引量:27
17
作者 王伟 彭永臻 +2 位作者 王海东 张树军 令云芳 《中国环境科学》 EI CAS CSCD 北大核心 2006年第3期293-297,共5页
采用分段进水生物脱氮工艺处理生活污水.设置0.9,0.6,0.4,0.3m3/h4组曝气量,相应的好氧区溶解氧(DO)浓度约为2.8,1.7,0.8,0.5mg/L左右.结果表明,在好氧区DO为0.5mg/L左右的低氧条件下,通过对系统进行适当的控制,可以取得较好的硝化效果... 采用分段进水生物脱氮工艺处理生活污水.设置0.9,0.6,0.4,0.3m3/h4组曝气量,相应的好氧区溶解氧(DO)浓度约为2.8,1.7,0.8,0.5mg/L左右.结果表明,在好氧区DO为0.5mg/L左右的低氧条件下,通过对系统进行适当的控制,可以取得较好的硝化效果,氨氮去除率可达98%以上.同时,由于低曝气量下混合液从好氧区到缺氧区携带的DO量减少,并且在好氧区发生了同步硝化反硝化作用,使得TN去除效果明显优于高曝气量的情况.另外,由于工艺结构的特点,分段进水生物脱氮系统可长期在低氧条件下运行,且污泥沉降性能良好. 展开更多
关键词 分段进水 生活污水 生物脱氮 曝气量 DO浓度 同步硝化反硝化作用(SND)
下载PDF
DO对SBR短程硝化系统的短期和长期影响 被引量:19
18
作者 王淑莹 黄惠珺 +3 位作者 郭建华 郑雅楠 葛士建 王中玮 《北京工业大学学报》 EI CAS CSCD 北大核心 2010年第8期1104-1110,共7页
采用实际的生活污水,在SBR反应器内分别考察了溶解氧(DO)对短程硝化效果及污泥种群结构的短期和长期影响.结果表明,通过采用实时控制曝气时间,高ρDO(ρ(DO)=(3±0.5)mg/L)与低ρDO(ρ(DO)=(0.5±0.1)mg/L)条件下SBR系统的亚硝... 采用实际的生活污水,在SBR反应器内分别考察了溶解氧(DO)对短程硝化效果及污泥种群结构的短期和长期影响.结果表明,通过采用实时控制曝气时间,高ρDO(ρ(DO)=(3±0.5)mg/L)与低ρDO(ρ(DO)=(0.5±0.1)mg/L)条件下SBR系统的亚硝酸盐积累率均能达到90%以上,而低ρDO相对于高ρDO更利于提高系统的同步硝化反硝化(SND)效果,两者的平均同步硝化反硝化率(SND率)分别为45.5%和9.5%,低ρDO下最高SND率达86%.FISH的检测结果表明,实时控制模式下反应器内亚硝酸氧化菌(NOB)逐渐被淘洗,而氨氧化细菌(AOB)变为优势硝化菌群.在高ρDO运行末期,稳定的短程污泥中AOB和NOB的相对数量分别为8%~10%和不足0.5%;在低ρDO运行末期,AOB数量出现了微弱上升,增至10%~12%,而NOB进一步被淘汰,基本检测不出.可见,采用好氧曝气时间实时控制,能对短程硝化系统内污泥种群起到优化作用,且在高、低ρDO下均能实现稳定的短程硝化效果,而低ρDO更有利于系统内亚硝酸氧化菌(NOB)的淘洗、短程硝化率的提高以及系统SND效果的加强. 展开更多
关键词 生物脱氮 短程硝化 同步硝化反硝化 污泥种群结构 低溶解氧 SBR
下载PDF
序批式生物膜法的脱氮特性及机理研究 被引量:15
19
作者 李军 杨秀山 +1 位作者 聂梅生 王宝贞 《环境科学学报》 CAS CSCD 北大核心 2002年第3期320-323,共4页
对序批式生物膜法工艺中所表现出来的脱氮特性进行了探讨 ,并提出了过量储存 SND脱氮作用机理 .厌氧段脱氮主要靠生物膜对含碳氮有机物的过量储存作用 ;好氧段脱氮主要靠生物膜的SND作用 。
关键词 生物膜法 脱氮特性 机理研究 序批式 生物脱氮 SND 过量储存 废水处理
下载PDF
高盐高氮榨菜废水生物脱氮试验研究 被引量:25
20
作者 周健 曾朝银 +1 位作者 龙腾锐 黄厚富 《环境科学学报》 CAS CSCD 北大核心 2005年第12期1636-1640,共5页
针对榨菜生产过程中产生的高盐高氮废水,探讨了在高盐条件下有机负荷、氮负荷、DO、pH等因素对SBBR反应器脱氮效能的影响.研究结果表明,在SBBR反应器中接种从榨菜腌制废水中筛选出的耐盐菌后,可使反应器对高盐废水具有良好的适应性,同... 针对榨菜生产过程中产生的高盐高氮废水,探讨了在高盐条件下有机负荷、氮负荷、DO、pH等因素对SBBR反应器脱氮效能的影响.研究结果表明,在SBBR反应器中接种从榨菜腌制废水中筛选出的耐盐菌后,可使反应器对高盐废水具有良好的适应性,同时镜检发现其生物膜中存在大量丝状菌;反应器具有较强的同时硝化反硝化能力,有机负荷、氮负荷、DO、pH等因素对反应器脱氮效能的影响显著;研究得出其最优运行参数为有机负荷小于1·0kg·m^(-3)·d^(-1)、氮负荷小于0·15kg·m^(-3)·d^(-1)、DO大于5mg·L^(-1)、进水pH大于7及温度大于20℃,在此条件下可使进水盐度(以NaCl计)为2%、CODCr为3500mg·L^(-1),TN为530mg·L^(-1),NH_4^+-N为150mg·L^(-1)的榨菜废水,其出水CODCr小于80mg·L^(-1)、NH_4^+-N小于3mg·L^(-1)、TN小于16mg·L^(-1),NH_4^+-N和TN的去除率分别为98%和96%。 展开更多
关键词 榨菜废水 高盐废水 生物脱氮 同时硝化反硝化
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部