Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), ...Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), NaClO concentration(mp), molar ratio of NaClO_2/NaClO(M), solution temperature(TR), initial solution pH, gas flow(Vg) and inlet concentration of SO_2(CS) and NO(CN) on the removal efficiencies of SO_2 and NO were discussed. The optimal experimental conditions were determined to be initial solution pH = 6, TR=55 °C and M = 1.3 under which the average efficiencies of desulfurization and denitrification could reach99.7% and 90.8%, respectively. Moreover, according to the analysis of reaction products, it was found that adding NaClO to NaClO_2 aqueous solution is favorable for the generation of ClO_2 and Cl_2 which have significant effect on desulfurization and denitrification. Finally, engineering experiments were performed and obtained good results demonstrating that this method is practicable and promising.展开更多
The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence...The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.展开更多
The highly active absorbent with oxidization based on fly ash, lime and additive was prepared. Experiments of simultaneous desulfurization and denitrification were carried out using fixture bed and duct injection. The...The highly active absorbent with oxidization based on fly ash, lime and additive was prepared. Experiments of simultaneous desulfurization and denitrification were carried out using fixture bed and duct injection. The influencial factors for the absorptive capacity of the absorbent were studied. The absorptive capacities of 120.7 mg for SO 2 and 43.7 mg for NOx were achieved at a Ca/(S+N) molar ratio 1.2, respectively, corresponding removal efficiencies of 87% and 76%, while spent absorbent appeared in the form of dry powder. The optimal temperature and humidity of flue gas treated with this process were shown to be approximately 50℃, and 5% respectively. The mechanism of removal for SO 2 and NOx was investigated. In comparison with traditional dry FGD, this process appears to have lower cost, less complicated configuration and simpler disposal of used absorbent. The valuable references can be provided for industrial application by this process. The foreground of application will be vast in China and in the world.展开更多
Based on the successful performance of a lab-scale upflow anaerobic sludge blanket (UASB) reactor with the capacity of simultaneous methanogenesis and denitrification (SMD), the specific phylogenetic groups and co...Based on the successful performance of a lab-scale upflow anaerobic sludge blanket (UASB) reactor with the capacity of simultaneous methanogenesis and denitrification (SMD), the specific phylogenetic groups and community structure of microbes in the SMD granule in the UASB reactor were investigated by the construction of the Eubacteria and Archaea 16S rDNA clone libraries, fragment length polymorphism, and sequence blast. Real time quantitative-polymerase chain reaction (RTQ-PCR) technique was used to quantify the contents of Eubacteria and Archaea in the SMD granule. The contents of some special predominant methanogens were also investigated. The results indicated that the Methanosaeta and Methanobacteria were the predominant methanogens in all Archaea in the SMD granule, with contents of 71.59% and 22.73% in all 88 random Archaea clones, respectively. The diversity of Eubacteria was much more complex than that of Archaea. The low GC positive gram bacteria and ε-Protebacteria were the main predominant Eubacteria species in SMD granule, their contents were 49.62% and 12.03% in all 133 random Eubacteria clones respectively. The results of RTQ-PCR indicated that the content of Archaea was less than Eubacteria, the Archaea content in total microorganisms in SMD granule was about 27.6%.展开更多
The effects of chemical oxygen demand and nitrogen(COD/N)ratio and dissolved oxygen concentration(DO)on simultaneous nitrification and denitrification(SND)were investigated using an airlift internal circulation membra...The effects of chemical oxygen demand and nitrogen(COD/N)ratio and dissolved oxygen concentration(DO)on simultaneous nitrification and denitrification(SND)were investigated using an airlift internal circulation membrane bioreactor(AIC-MBR)with synthetic wastewater.The results showed that the COD efficiencies were consistently greater than 90% regardless of changes in the COD/N ratio.At the COD/N ratio of 4.77 and 10.04,the system nitrogen removal efficiency became higher than 70%.However,the nitrogen remova...展开更多
Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. S...Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. SND via nitrite was achieved in SHBR by controlling demand oxygen (DO) concentration. There was a programmed decrease of the DO from 2.50 mg·L^-1 to 0.30 mg·L^-1, and the average nitrite accumulation rate (NAR) was increased from 16.5% to 95.5% in 3 weeks. Subsequently, further increase in DO concentration to 1.50 mg·L^-1 did not destroy the partial nitrification to nitrite. The results showed that limited air flow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate. Nitrogen removal efficiency was increased with the increase in NAR, that is, NAR was increased from 60% to 90%, and total nitrogen removal efficiency was increased from 68% to 85%. The SHBR could tolerate high organic loading rate (OLR), COD and ammonia-nitrogen removal efficiency were greater than 92% and 93.5%, respectively,, and it even operated under low DO concentration (0.5 mg·L^-1) and maintained high OLR (4.0 kg COD·m^-3·d^-1). The presence of biofilm positively affected the activated sludge settling capability, and sludge volume index (SVI) of activated sludge in SHBR never hit more than 90 ml·L^-1 throughout the experiments.展开更多
In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was...In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment.展开更多
A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has ...A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has the function of nitrification and removing organic substrate. In this study, we focused on the denitrification performance of LBAF and its possible mechanism under thorough aeration. We identified the existence of simultaneous nitrification and denitrification (SND) by analyzing nitrogenous compounds along the flow path of LBAF and supportive microbial microscopy, and studied the effects of air/water ratio and hydraulic loading on the performance of nitrogen removal and on SND in LBAF to find out the optimal operation condition. It is found that for saving operation cost, aeration can be reduced to some degree that allows desirable removal efficiency of pollutants, and the optimal air/water ratio is 10:1. Hydraulic loading less than 0.43 m h?1 hardly affects the nitrification and denitrification performance; whereas higher hydraulic loading is unfavorable to both nitrification and denitrification, far more unfavorable to denitrification than to nitrification.展开更多
The influence of main process parameters on simultaneous nitrification and denitrification (SND) in a sequencing batch reactor (SBR) were investigated while treating actual municipal sewage. The influent average c...The influence of main process parameters on simultaneous nitrification and denitrification (SND) in a sequencing batch reactor (SBR) were investigated while treating actual municipal sewage. The influent average concentration of CODcr and total nitrogen was 350mg-L-l and 35mg.L-l. The experiment indicated the following four operation control strategies: (1) When operation cycle was 6 hours, oxidation of organic pollutants and simultaneous nitrification and denitrification could well completed in the SBR reactor; (2) TN removal rate could be increased significantly, 40% higher than traditional SBR processes when idle period was set between influent and aeration; (3) The time of idle period could affect simultaneous nitrification and denitrification and the best time is 30 minutes; (4) Increase of sludge organic load may improve TN removal efficiency, but NH3-N removal efficiency declines.展开更多
For urban wastewater treatment,we conducted a novel four-stage step-feed wastewater treatment system combined with a fluidized bed laboratory experiment to investigate chemical oxygen demand(COD),NH4+-N,and total n...For urban wastewater treatment,we conducted a novel four-stage step-feed wastewater treatment system combined with a fluidized bed laboratory experiment to investigate chemical oxygen demand(COD),NH4+-N,and total nitrogen(TN) removal performance.The removal rates of COD,NH4+-N and TN were 88.2%,95.7%,and 86.4% with e?uent concentrations of COD,NH4+-N and TN less than 50,8,and 10 mg/L,respectively.Biomass and bacterial activities were also measured,with results showing more nitrobacteria in the activated sludge than in the biofilm;however,bacterial activity of the biofilm biomass and the activated sludge were similar.Nitrogen concentrations during the process were also detected,with simultaneous nitrification and denitrification found to be obvious.展开更多
Based on the TiO2 photocatalysis mechanism, a new method of simultaneous desulfurization and denitrification from flue gas was proposed. Preparation of TiO2 photocatalyst, design of photocatalysis reactor and influenc...Based on the TiO2 photocatalysis mechanism, a new method of simultaneous desulfurization and denitrification from flue gas was proposed. Preparation of TiO2 photocatalyst, design of photocatalysis reactor and influencing factors for simul- taneous removal of SO2 and NO, and removal mechanism of SO2 and NO were studied. After the optimal values of concentration of O2 in flue gas, the relative humidity of flue gas and the irradiation time in the photocatalysis reactor were used, the efficiencies of removal for SO2 and NO can be achieved above 98% and about 67%, respectively. According to the results of removal products analysis, the re- moval mechanism of SO2 and NO based on TiO2 photocatlysis can be put forward, namely, SO2 was oxidized to SO3 partly, the bulk of NO was oxidized to NO2, and both were removed by resorbing finally.展开更多
The oxidizing highly reactive absorbent was prepared from fly ash,industry lime,and an oxidizing additive M.Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fl...The oxidizing highly reactive absorbent was prepared from fly ash,industry lime,and an oxidizing additive M.Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fluidized bed(CFB).The effects of influencing factors and calcium availability were also investigated on the removal efficiencies of desulfurization and denitrification.Removal efficiencies of 95.5%for SO2 and 64.8%for NO were obtained respectively under the optimal experimental conditions. The component of the spent absorbent was analyzed with chemical analysis methods.The results in- dicated that more nitrogen species appeared in the spent absorbent except sulfur species.A scanning electron microscope(SEM)and an accessory X-ray energy spectrometer were used to observe micro-properties of the samples,including fly ash,oxidizing highly reactive absorbent and spent absorbent.The simultaneous removal mechanism of SO2 and NO based on this absorbent was pro- posed according to the experimental results.展开更多
Performance of a full-scale anoxic-oxic activated sludge treatment plant(4.0×10-5 m-3/day for the first-stage project) was followed during a year.The plant performed well for the removal of carbon,nitrogen and ...Performance of a full-scale anoxic-oxic activated sludge treatment plant(4.0×10-5 m-3/day for the first-stage project) was followed during a year.The plant performed well for the removal of carbon,nitrogen and phosphorus in the process of treating domestic wastewater within a temperature range of 10.8℃ to 30.5℃.Mass balance calculations indicated that COD utilization mainly occurred in the anoxic phase,accounting for 88.2% of total COD removal.Ammonia nitrogen removal occurred 13.71% in the anoxic zones and 78.77% in the aerobic zones.The contribution of anoxic zones to total nitrogen(TN) removal was 57.41%.Results indicated that nitrogen elimination in the oxic tanks was mainly contributed by simultaneous nitrification and denitrification(SND).The reduction of phosphorus mainly took place in the oxic zones,51.45% of the total removal.Denitrifying phosphorus removal was achieved biologically by 11.29%.Practical experience proved that adaptability to gradually changing temperature of the microbial populations was important to maintain the plant overall stability.Sudden changes in temperature did not cause paralysis of the system just lower removal efficiency,which could be explained by functional redundancy of microorganisms that may compensate the adverse effects of temperature changes to a certain degree.Anoxic-oxic process without internal recycling has great potential to treat low strength wastewater(i.e.,TN 〈 35 mg/L) as well as reducing operation costs.展开更多
Fly ash,industry-grade lime and a few oxidizing manganese compound additive were used to prepare the“Oxygen-riched”highly reactive absorbent for simultaneous desulfurization and denitrification.Experiments of simult...Fly ash,industry-grade lime and a few oxidizing manganese compound additive were used to prepare the“Oxygen-riched”highly reactive absorbent for simultaneous desulfurization and denitrification.Experiments of simultaneous desulfurization and denitrification were carried out using the highly reactive absorbent in the flue gas circulating fluidized bed(CFB)system.Removal efficiencies of 94.5%for SO_(2)and 64.2%for NO were obtained respectively.The scanning electron microscope(SEM)and accessory X-ray energy spectrometer were used to observe micro-properties of the samples,including fly ash,common highly reactive absorbent,“Oxygen-riched”highly reactive absorbent and spent absorbent.The white flake layers were observed in the SEM images about surfaces of the common highly reactive absorbent and“Oxygen-riched”one,and the particle surfaces of the spent absorbent were porous.The content of calcium on surface was higher than that of the average in the highly reactive absorbent.The manganese compound additive dispersed uniformly on the surfaces of the“Oxygen-riched”highly reactive absorbent.There was a sulfur peak in the energy spectra pictures of the spent absorbent.The component of the spent absorbent was analyzed with chemical analysis methods,and the results indicated that more nitrogen species appeared in the absorbent except sulfur species,and SO_(2)and NO were removed by chemical absorption according to the experimental results of X-ray energy spectrometer and the chemical analysis.Sulfate being the main desulfurization products,nitrite was the main denitrification ones during the process,in which NO was oxidized rapidly to NO_(2)and absorbed by the chemical reaction.展开更多
An aerobic sequencing batch biofilm reactor(SBBR)packed with Bauer rings was used to treat real domestic wastewater for simultaneous nitrification and deni-trification.The SBBR is advantageous for creating an anoxic c...An aerobic sequencing batch biofilm reactor(SBBR)packed with Bauer rings was used to treat real domestic wastewater for simultaneous nitrification and deni-trification.The SBBR is advantageous for creating an anoxic condition,and the biofilm can absorb and store carbon for good nitrification and denitrification.An average concentra-tion of oxygen ranging from 0.8 to 4.0 mg/L was proved very efficient for nitrification and denitrification.Volumetric loads of TN dropped dramatically and effluent TN concentra-tion increased quickly when the concentration of average dissolved oxygen was more than 4.0 mg/L.The efficiency of simultaneous nitrification and denitrification(SND)increased with increasing thickness of the biofilm.The influent concen-tration hardly affected the TN removal efficiency,but the effluent TN increased with increasing influent concentration.It is suggested that a subsequence for denitrification be added or influent amount be decreased to meet effluent quality requirements.At optimum operating parameters,the TN removal efficiency of 74%-82%could be achieved.展开更多
Simultaneous nitrification and denitrification(SND),which is more economical compared with the tradi-tional method for nitrogen removal,is studied in this paper.In order to find the suitable conditions of this process...Simultaneous nitrification and denitrification(SND),which is more economical compared with the tradi-tional method for nitrogen removal,is studied in this paper.In order to find the suitable conditions of this process,a mixed flow activated sludge system under low oxygen concentration is investigated,and some key control parameters are exam-ined for nitrogen removal from synthetic wastewater.The results show that SND is accessible when oxygen concentra-tion is 0.3-0.8 mg/L.The nitrogen removal rate can be obtained up to 66.7%with solids retention time(SRT)of 45 d,C/N value of 10,and F/M ratio of 0.1 g COD/(g MLSS·d).Theoretical analysis indicates that SND is a physical phenomenon and governed by oxygen diffusion in flocs.展开更多
Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study,...Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study, a lab-scale up-flow blanket filter(UBF) and zeolite sequence batch reactor(ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen(TN) removal efficiency of over 70% during the start-up stage(days 1–50), and reached a TN removal efficiency of 96%in the following 90 days(days 51–140) at COD/NH_(4)^(+)-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107copies/μL DNA;Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN(66.5% ± 4.5%)and COD(71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.展开更多
An "Oxygen-enriched" highly reactive absor- bent was prepared by mixing fly ash, lime and a small quantity of KMnO4 for simultaneous desulfiarization and denitrification. Removal of SO2 and NO simultaneously was car...An "Oxygen-enriched" highly reactive absor- bent was prepared by mixing fly ash, lime and a small quantity of KMnO4 for simultaneous desulfiarization and denitrification. Removal of SO2 and NO simultaneously was carried out using this absorbent in a flue gas circulating fluidized bed (CFB). The highest simultaneous removal efficiency, 94.5% of SO2 and 64.2% of NO, was achieved under the optimal experiment conditions. Scanning Electron Microscope (SEM) and Accessory X-ray Energy Spectrometer (EDX) were used to observe the surface characteristics of fly ash, lime, "Oxygen-enriched" highly reactive absorbent and the spent absorbent. An ion chromatograph (IC) and chemical analysis methods were used to determine the contents of sulfate, sulfite, nitrate and nitrite in the spent absorbents, the results showed that sulfate and nitrite were the main products for desulfurization and denitrification respectively. The mechanism of removing SO2 and NO simultaneously was proposed based on the analysis results of SEM, EDX, IC and the chemical analysis methods.展开更多
基金Supported by the National Science Foundation of China for Distinguished Young Scholars(No.51325601)Major Program of National Science Foundation of China(No.51390492)Joint Funds of National Science Foundation of China(No.U1560205)
文摘Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), NaClO concentration(mp), molar ratio of NaClO_2/NaClO(M), solution temperature(TR), initial solution pH, gas flow(Vg) and inlet concentration of SO_2(CS) and NO(CN) on the removal efficiencies of SO_2 and NO were discussed. The optimal experimental conditions were determined to be initial solution pH = 6, TR=55 °C and M = 1.3 under which the average efficiencies of desulfurization and denitrification could reach99.7% and 90.8%, respectively. Moreover, according to the analysis of reaction products, it was found that adding NaClO to NaClO_2 aqueous solution is favorable for the generation of ClO_2 and Cl_2 which have significant effect on desulfurization and denitrification. Finally, engineering experiments were performed and obtained good results demonstrating that this method is practicable and promising.
基金Project supported by the Key International Cooperative Program of NSFC(No. 50521140075)the Hi-Tech Research and Development Program(863)of China(No. 2004AA601020)the Attached Projects of"863"Project of Beijing Municipal Science and Technology(No.20005186040421).
文摘The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.
文摘The highly active absorbent with oxidization based on fly ash, lime and additive was prepared. Experiments of simultaneous desulfurization and denitrification were carried out using fixture bed and duct injection. The influencial factors for the absorptive capacity of the absorbent were studied. The absorptive capacities of 120.7 mg for SO 2 and 43.7 mg for NOx were achieved at a Ca/(S+N) molar ratio 1.2, respectively, corresponding removal efficiencies of 87% and 76%, while spent absorbent appeared in the form of dry powder. The optimal temperature and humidity of flue gas treated with this process were shown to be approximately 50℃, and 5% respectively. The mechanism of removal for SO 2 and NOx was investigated. In comparison with traditional dry FGD, this process appears to have lower cost, less complicated configuration and simpler disposal of used absorbent. The valuable references can be provided for industrial application by this process. The foreground of application will be vast in China and in the world.
文摘Based on the successful performance of a lab-scale upflow anaerobic sludge blanket (UASB) reactor with the capacity of simultaneous methanogenesis and denitrification (SMD), the specific phylogenetic groups and community structure of microbes in the SMD granule in the UASB reactor were investigated by the construction of the Eubacteria and Archaea 16S rDNA clone libraries, fragment length polymorphism, and sequence blast. Real time quantitative-polymerase chain reaction (RTQ-PCR) technique was used to quantify the contents of Eubacteria and Archaea in the SMD granule. The contents of some special predominant methanogens were also investigated. The results indicated that the Methanosaeta and Methanobacteria were the predominant methanogens in all Archaea in the SMD granule, with contents of 71.59% and 22.73% in all 88 random Archaea clones, respectively. The diversity of Eubacteria was much more complex than that of Archaea. The low GC positive gram bacteria and ε-Protebacteria were the main predominant Eubacteria species in SMD granule, their contents were 49.62% and 12.03% in all 133 random Eubacteria clones respectively. The results of RTQ-PCR indicated that the content of Archaea was less than Eubacteria, the Archaea content in total microorganisms in SMD granule was about 27.6%.
文摘The effects of chemical oxygen demand and nitrogen(COD/N)ratio and dissolved oxygen concentration(DO)on simultaneous nitrification and denitrification(SND)were investigated using an airlift internal circulation membrane bioreactor(AIC-MBR)with synthetic wastewater.The results showed that the COD efficiencies were consistently greater than 90% regardless of changes in the COD/N ratio.At the COD/N ratio of 4.77 and 10.04,the system nitrogen removal efficiency became higher than 70%.However,the nitrogen remova...
基金the National Key Project of Scientific and Technical Supporting Program of Ministry of Science and Technology ofChina(2006BAC19B03)Academic Human Resources Development in Institutions of Higher Leading under the Jurisdiction ofBeijing Municipalitythe Specialized Research Fund for the Doctoral Program of Higher Education of China(20060005002).
文摘Sequence hybrid biological reactor (SHBR) was proposed, and some key control parameters were investigated for nitrogen removal from wastewater by simultaneous nitrification and denitrification (SND) via nitrite. SND via nitrite was achieved in SHBR by controlling demand oxygen (DO) concentration. There was a programmed decrease of the DO from 2.50 mg·L^-1 to 0.30 mg·L^-1, and the average nitrite accumulation rate (NAR) was increased from 16.5% to 95.5% in 3 weeks. Subsequently, further increase in DO concentration to 1.50 mg·L^-1 did not destroy the partial nitrification to nitrite. The results showed that limited air flow rate to cause oxygen deficiency in the reactor would eventually induce only nitrification to nitrite and not further to nitrate. Nitrogen removal efficiency was increased with the increase in NAR, that is, NAR was increased from 60% to 90%, and total nitrogen removal efficiency was increased from 68% to 85%. The SHBR could tolerate high organic loading rate (OLR), COD and ammonia-nitrogen removal efficiency were greater than 92% and 93.5%, respectively,, and it even operated under low DO concentration (0.5 mg·L^-1) and maintained high OLR (4.0 kg COD·m^-3·d^-1). The presence of biofilm positively affected the activated sludge settling capability, and sludge volume index (SVI) of activated sludge in SHBR never hit more than 90 ml·L^-1 throughout the experiments.
基金supported by the Science Foundation Ireland(SFI)through the SFI Research Professorship Programme entitled"Innovative Energy Technologies for Biofuels,Bioenergy and a Sustainable Irish Bioeconomy"(IETSBIO3Grant No.15/RP/2763)the Research Infrastructure Research Grant Platform for Biofuel Analysis(Grant No.16/RI/3401).
文摘In this study, simultaneous nitrification and autotrophic denitrification (SNAD) with either elemental sulfur or pyrite were investigated in fluidized bed reactors in mesophilic conditions. The reactor performance was evaluated at different ammonium (12-40 mg/L of NH4+-N), nitrate (35-45 mg/L of NO3--N), and dissolved oxygen (DO) (0.1-1.5 mg/L) concentrations, with a hydraulic retention time of 12 h. The pyrite reactor supported the SNAD process with a maximum nitrogen removal efficiency of 139.5 mg/(L·d) when the DO concentration was in the range of 0.8-1.5 mg/L. This range, however, limited the denitrification efficiency of the reactor, which decreased from 90.0% ± 5.3% in phases II-V to 67.9% ± 7.2% in phases VI and VII. Sulfate precipitated as iron sulfate (FeSO4/Fe2(SO4)3) and sodium sulfate (Na2SO4) minerals during the experiment. The sulfur reactor did not respond well to nitrification with a low and unstable ammonium removal efficiency, while denitrification occurred with a nitrate removal efficiency of 97.8%. In the pyrite system, the nitrifying bacterium Nitrosomonas sp. was present, and its relative abundance increased from 0.1% to 1.1%, while the autotrophic denitrifying genera Terrimonas, Ferruginibacter, and Denitratimonas dominated the community. Thiobacillus, Sulfurovum, and Trichlorobacter were the most abundant genera in the sulfur reactor during the entire experiment.
基金Funded by the National Key Technologies R & D Program of China During the 10th Five-Year Plan Periods of China (No.2001BA604A01-03).
文摘A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has the function of nitrification and removing organic substrate. In this study, we focused on the denitrification performance of LBAF and its possible mechanism under thorough aeration. We identified the existence of simultaneous nitrification and denitrification (SND) by analyzing nitrogenous compounds along the flow path of LBAF and supportive microbial microscopy, and studied the effects of air/water ratio and hydraulic loading on the performance of nitrogen removal and on SND in LBAF to find out the optimal operation condition. It is found that for saving operation cost, aeration can be reduced to some degree that allows desirable removal efficiency of pollutants, and the optimal air/water ratio is 10:1. Hydraulic loading less than 0.43 m h?1 hardly affects the nitrification and denitrification performance; whereas higher hydraulic loading is unfavorable to both nitrification and denitrification, far more unfavorable to denitrification than to nitrification.
文摘The influence of main process parameters on simultaneous nitrification and denitrification (SND) in a sequencing batch reactor (SBR) were investigated while treating actual municipal sewage. The influent average concentration of CODcr and total nitrogen was 350mg-L-l and 35mg.L-l. The experiment indicated the following four operation control strategies: (1) When operation cycle was 6 hours, oxidation of organic pollutants and simultaneous nitrification and denitrification could well completed in the SBR reactor; (2) TN removal rate could be increased significantly, 40% higher than traditional SBR processes when idle period was set between influent and aeration; (3) The time of idle period could affect simultaneous nitrification and denitrification and the best time is 30 minutes; (4) Increase of sludge organic load may improve TN removal efficiency, but NH3-N removal efficiency declines.
基金supported by the National High Technology Research Development Program (863) of China(No. 2007AA06A411)the Science and Technology Research Projects of Heilongjiang Education Committee(No. 11551130)
文摘For urban wastewater treatment,we conducted a novel four-stage step-feed wastewater treatment system combined with a fluidized bed laboratory experiment to investigate chemical oxygen demand(COD),NH4+-N,and total nitrogen(TN) removal performance.The removal rates of COD,NH4+-N and TN were 88.2%,95.7%,and 86.4% with e?uent concentrations of COD,NH4+-N and TN less than 50,8,and 10 mg/L,respectively.Biomass and bacterial activities were also measured,with results showing more nitrobacteria in the activated sludge than in the biofilm;however,bacterial activity of the biofilm biomass and the activated sludge were similar.Nitrogen concentrations during the process were also detected,with simultaneous nitrification and denitrification found to be obvious.
文摘Based on the TiO2 photocatalysis mechanism, a new method of simultaneous desulfurization and denitrification from flue gas was proposed. Preparation of TiO2 photocatalyst, design of photocatalysis reactor and influencing factors for simul- taneous removal of SO2 and NO, and removal mechanism of SO2 and NO were studied. After the optimal values of concentration of O2 in flue gas, the relative humidity of flue gas and the irradiation time in the photocatalysis reactor were used, the efficiencies of removal for SO2 and NO can be achieved above 98% and about 67%, respectively. According to the results of removal products analysis, the re- moval mechanism of SO2 and NO based on TiO2 photocatlysis can be put forward, namely, SO2 was oxidized to SO3 partly, the bulk of NO was oxidized to NO2, and both were removed by resorbing finally.
基金the Significant Pre-research Foundation of North China Electric PowerUniversity(D03-035)
文摘The oxidizing highly reactive absorbent was prepared from fly ash,industry lime,and an oxidizing additive M.Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fluidized bed(CFB).The effects of influencing factors and calcium availability were also investigated on the removal efficiencies of desulfurization and denitrification.Removal efficiencies of 95.5%for SO2 and 64.8%for NO were obtained respectively under the optimal experimental conditions. The component of the spent absorbent was analyzed with chemical analysis methods.The results in- dicated that more nitrogen species appeared in the spent absorbent except sulfur species.A scanning electron microscope(SEM)and an accessory X-ray energy spectrometer were used to observe micro-properties of the samples,including fly ash,oxidizing highly reactive absorbent and spent absorbent.The simultaneous removal mechanism of SO2 and NO based on this absorbent was pro- posed according to the experimental results.
基金supported by the National High Technology Research and Development Program (863 Program) of China (No. 2012AA063302)the Jiangsu Water Protection Project (No. 2015005)
文摘Performance of a full-scale anoxic-oxic activated sludge treatment plant(4.0×10-5 m-3/day for the first-stage project) was followed during a year.The plant performed well for the removal of carbon,nitrogen and phosphorus in the process of treating domestic wastewater within a temperature range of 10.8℃ to 30.5℃.Mass balance calculations indicated that COD utilization mainly occurred in the anoxic phase,accounting for 88.2% of total COD removal.Ammonia nitrogen removal occurred 13.71% in the anoxic zones and 78.77% in the aerobic zones.The contribution of anoxic zones to total nitrogen(TN) removal was 57.41%.Results indicated that nitrogen elimination in the oxic tanks was mainly contributed by simultaneous nitrification and denitrification(SND).The reduction of phosphorus mainly took place in the oxic zones,51.45% of the total removal.Denitrifying phosphorus removal was achieved biologically by 11.29%.Practical experience proved that adaptability to gradually changing temperature of the microbial populations was important to maintain the plant overall stability.Sudden changes in temperature did not cause paralysis of the system just lower removal efficiency,which could be explained by functional redundancy of microorganisms that may compensate the adverse effects of temperature changes to a certain degree.Anoxic-oxic process without internal recycling has great potential to treat low strength wastewater(i.e.,TN 〈 35 mg/L) as well as reducing operation costs.
基金This work was supported by the Significant Pre-research Foundat ion of the North China Electric Power University.
文摘Fly ash,industry-grade lime and a few oxidizing manganese compound additive were used to prepare the“Oxygen-riched”highly reactive absorbent for simultaneous desulfurization and denitrification.Experiments of simultaneous desulfurization and denitrification were carried out using the highly reactive absorbent in the flue gas circulating fluidized bed(CFB)system.Removal efficiencies of 94.5%for SO_(2)and 64.2%for NO were obtained respectively.The scanning electron microscope(SEM)and accessory X-ray energy spectrometer were used to observe micro-properties of the samples,including fly ash,common highly reactive absorbent,“Oxygen-riched”highly reactive absorbent and spent absorbent.The white flake layers were observed in the SEM images about surfaces of the common highly reactive absorbent and“Oxygen-riched”one,and the particle surfaces of the spent absorbent were porous.The content of calcium on surface was higher than that of the average in the highly reactive absorbent.The manganese compound additive dispersed uniformly on the surfaces of the“Oxygen-riched”highly reactive absorbent.There was a sulfur peak in the energy spectra pictures of the spent absorbent.The component of the spent absorbent was analyzed with chemical analysis methods,and the results indicated that more nitrogen species appeared in the absorbent except sulfur species,and SO_(2)and NO were removed by chemical absorption according to the experimental results of X-ray energy spectrometer and the chemical analysis.Sulfate being the main desulfurization products,nitrite was the main denitrification ones during the process,in which NO was oxidized rapidly to NO_(2)and absorbed by the chemical reaction.
基金This work was supported by the National Natural Science Foundation of China for International Key Cooperation(Grant No.50521140075)the Key Laboratory Opening Foundation of Beijing.
文摘An aerobic sequencing batch biofilm reactor(SBBR)packed with Bauer rings was used to treat real domestic wastewater for simultaneous nitrification and deni-trification.The SBBR is advantageous for creating an anoxic condition,and the biofilm can absorb and store carbon for good nitrification and denitrification.An average concentra-tion of oxygen ranging from 0.8 to 4.0 mg/L was proved very efficient for nitrification and denitrification.Volumetric loads of TN dropped dramatically and effluent TN concentra-tion increased quickly when the concentration of average dissolved oxygen was more than 4.0 mg/L.The efficiency of simultaneous nitrification and denitrification(SND)increased with increasing thickness of the biofilm.The influent concen-tration hardly affected the TN removal efficiency,but the effluent TN increased with increasing influent concentration.It is suggested that a subsequence for denitrification be added or influent amount be decreased to meet effluent quality requirements.At optimum operating parameters,the TN removal efficiency of 74%-82%could be achieved.
文摘Simultaneous nitrification and denitrification(SND),which is more economical compared with the tradi-tional method for nitrogen removal,is studied in this paper.In order to find the suitable conditions of this process,a mixed flow activated sludge system under low oxygen concentration is investigated,and some key control parameters are exam-ined for nitrogen removal from synthetic wastewater.The results show that SND is accessible when oxygen concentra-tion is 0.3-0.8 mg/L.The nitrogen removal rate can be obtained up to 66.7%with solids retention time(SRT)of 45 d,C/N value of 10,and F/M ratio of 0.1 g COD/(g MLSS·d).Theoretical analysis indicates that SND is a physical phenomenon and governed by oxygen diffusion in flocs.
基金supported by the Open Research Fund of Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control (No. EPD202002)Scientific Research Project of Education Department of Hunan Province (No. 20C0057)the Science and Technology Department of Hunan Province (Nos. 2021JJ10007, 2021NK2015)。
文摘Simultaneous anammox and denitrification(SAD) is an efficient approach to treat wastewater having a low C/N ratio;however, few studies have investigated a combination of SAD and partial nitritation(PN). In this study, a lab-scale up-flow blanket filter(UBF) and zeolite sequence batch reactor(ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen(TN) removal efficiency of over 70% during the start-up stage(days 1–50), and reached a TN removal efficiency of 96%in the following 90 days(days 51–140) at COD/NH_(4)^(+)-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107copies/μL DNA;Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN(66.5% ± 4.5%)and COD(71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.
文摘An "Oxygen-enriched" highly reactive absor- bent was prepared by mixing fly ash, lime and a small quantity of KMnO4 for simultaneous desulfiarization and denitrification. Removal of SO2 and NO simultaneously was carried out using this absorbent in a flue gas circulating fluidized bed (CFB). The highest simultaneous removal efficiency, 94.5% of SO2 and 64.2% of NO, was achieved under the optimal experiment conditions. Scanning Electron Microscope (SEM) and Accessory X-ray Energy Spectrometer (EDX) were used to observe the surface characteristics of fly ash, lime, "Oxygen-enriched" highly reactive absorbent and the spent absorbent. An ion chromatograph (IC) and chemical analysis methods were used to determine the contents of sulfate, sulfite, nitrate and nitrite in the spent absorbents, the results showed that sulfate and nitrite were the main products for desulfurization and denitrification respectively. The mechanism of removing SO2 and NO simultaneously was proposed based on the analysis results of SEM, EDX, IC and the chemical analysis methods.