Some related problems of two n-dimensional simplices which are on an(n- 1)-dimensional hypersphere are investigated and a sine theorem of the k-dimensional mixed vertex angles which are defined in this paper is given....Some related problems of two n-dimensional simplices which are on an(n- 1)-dimensional hypersphere are investigated and a sine theorem of the k-dimensional mixed vertex angles which are defined in this paper is given. This result is a generalization of the sine theorem established. By using the generalized sine theorem, we present some new interesting geometric inequalities involving the k-dimensional vertex angles of each n-simplex and the k-dimensional mixed vertex angle of two n-simplices. These results can improve some recent results.展开更多
A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm de...A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.展开更多
基金Supported by the Doctoral Programs Foundation of Education Ministry of China(2011 3401110009) Supported by the Universities Natural Science Foundation of Anhui Province(KJ2013A220) Supported by the Natural Science Research Project of Hefei Normal University(2012kj11)
文摘Some related problems of two n-dimensional simplices which are on an(n- 1)-dimensional hypersphere are investigated and a sine theorem of the k-dimensional mixed vertex angles which are defined in this paper is given. This result is a generalization of the sine theorem established. By using the generalized sine theorem, we present some new interesting geometric inequalities involving the k-dimensional vertex angles of each n-simplex and the k-dimensional mixed vertex angle of two n-simplices. These results can improve some recent results.
文摘A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.