BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis th...BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.展开更多
Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reactio...Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs.展开更多
Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de...Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs.展开更多
The hypothalamic-pituitary-ovarian(HPO)axis represents a central neuroendocrine network essential for reproductive function.Despite its critical role,the intrinsic heterogeneity within the HPO axis across vertebrates ...The hypothalamic-pituitary-ovarian(HPO)axis represents a central neuroendocrine network essential for reproductive function.Despite its critical role,the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined.This study provides the first comprehensive,unbiased,cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens.Within the hypothalamus,pituitary,and ovary,seven,12,and 13 distinct cell types were identified,respectively.Results indicated that the pituitary adenylate cyclase activating polypeptide(PACAP),follicle-stimulating hormone(FSH),and prolactin(PRL)signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone(GnRH),FSH,and luteinizing hormone(LH)within the hypothalamus and pituitary.In the ovary,interactions between granulosa cells and oocytes involved the KIT,CD99,LIFR,FN1,and ANGPTL signaling pathways,which collectively regulate follicular maturation.The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis.Additionally,gene expression analysis revealed that relaxin 3(RLN3),gastrin-releasing peptide(GRP),and cocaine-and amphetamine regulated transcripts(CART,also known as CARTPT)may function as novel endocrine hormones,influencing the HPO axis through autocrine,paracrine,and endocrine pathways.Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP,RLN3,CARTPT,LHCGR,FSHR,and GRPR in the ovaries of Lohmann layers,potentially contributing to their superior reproductive performance.In conclusion,this study provides a detailed molecular characterization of the HPO axis,offering novel insights into the regulatory mechanisms underlying reproductive biology.展开更多
The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual si...The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual single atoms(DSAs)in a zinc-zeolitic imidazolate framework(Zn-ZIF),followed by calcination under an N_(2) atmosphere to synthesize ruthenium-platinum DSAs supported on a nitrogendoped carbon substrate(RuPt DSAs-NC).Theoretical calculations showed that the degree of Ru 5dxz-~*O 2p_x orbital hybridization was high when^(*)O was adsorbed at the Ru site,indicating enhanced covalent hybridization of metal sites and oxygen ligands,which benefited the adsorption of intermediate species.The presence of the RuPtN_6 active center optimized the absorption-desorption behavior of intermediates,improving the electrocatalytic performance of the oxygen reduction reaction(ORR)and the oxygen evolution reaction(DER),RuPt DSAs-NC exhibited a 0.87 V high half-wave potential and a 268 mV low overpotential at 10 mA cm^(-2)in an alkaline environment.Furthermore,rechargeable zinc-air batteries(ZABs)achieved a peak power density of 171 MW cm^(-2).The RuPt DSAs-NC demonstrated long-term cycling for up to 500 h with superior round-trip efficiency.This study provided an effective structural design strategy to construct DSAs active sites for enhanced electrocata lytic performance.展开更多
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and...Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion.展开更多
We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge l...We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.展开更多
Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical...Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical photocatalytic sites.We herein report an ion-loading pyrolysis route to in-situ anchor Pd single atoms as well as twinned Pd nanoparticles on ultra-thin graphitic carbon nitride nanosheets(PdTP/Pd_(SA)-CN)for high-efficiency photoreduction of CO_(2).The anchored Pd twinned nanoparticles donate electrons to adjacent single Pd–N_(4) sites through the carbon nitride networks,and the optimized PdTP/Pd_(SA)-CN photocatalyst exhibits a CO evolution rate up to 46.5μmol g^(-1) h^(-1) with nearly 100%selectivity.As revealed by spectroscopic and theoretical analyses,the superior photocatalytic activity is attributed to the lowered desorption barrier of carbonyl species at electron-enriched Pd single atoms,together with the improved efficiencies of light-harvesting and charge separation/transport.This work has demonstrated the engineering of the electron density of single active sites with twinned metal nanoparticles assisted by strong electronic interaction with the support of the atomic metal,and unveiled the underlying mechanism for expedited photocatalytic efficiency.展开更多
Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enh...Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined.展开更多
Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance ...Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization.展开更多
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption prop...Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.展开更多
Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are ...Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are becoming popular materials because of their low cost, high electron conductivity, and controllable surface property. At the stage of catalysts preparation, the rational design of active sites is necessary for the substantial improvement of activity of catalysts. To date, the reported design strategies are mainly about synthesis mechanism and synthetic method. The level of understanding of design strategies of carbon-based single atom catalysts is requiring deep to be paved. The design strategies about manufacturing defects and coordination modulation of catalysts are presented. The design strategies are easy to carry out in the process of drawing up preparation routes. The components of carbon-based SACs can be divided into two parts: active site and carbon skeleton. In this review, the manufacture of defects and coordination modulation of two parts are introduced, respectively. The structure features and design strategies from the active sites and carbon skeletons to the overall catalysts are deeply discussed.Then, the structural design of different nano-carbon SACs is introduced systematically. The characterization of active site and carbon skeleton and the detailed mechanism of reaction process are summarized and analyzed. Next, the applications in the field of electrocatalysis for oxygen conversion and hydrogen conversion are illustrated. The relationships between the superior performance and the structure of active sites or carbon skeletons are discussed. Finally, the conclusion of this review and prospects on the abundant space for further promotion in broader fields are depicted. This review highlights the design and preparation thoughts from the parts to the whole. The detailed and systematic discussion will provide useful guidance for design of SACs for readers.展开更多
The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing mul...The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions.展开更多
Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the ...Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the semiconductor-based electrical gas sensor,the core is the catalysis process of target gas molecules on the sensitive materials.In this context,the SACs offer great potential for highly sensitive and selective gas sensing,however,only some of the bubbles come to the surface.To facilitate practical applications,we present a comprehensive review of the preparation strategies for SACs,with a focus on overcoming the challenges of aggregation and low loading.Extensive research efforts have been devoted to investigating the gas sensing mechanism,exploring sensitive materials,optimizing device structures,and refining signal post-processing techniques.Finally,the challenges and future perspectives on the SACs based gas sensing are presented.展开更多
The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain method...The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain methods.The phase constitution and morphology of surface oxides and the characteristics of the crosssection oxide film were analyzed by XRD,SEM and EDS.Results show that the oxidation kinetics of the 4774DD1 superalloy follows the cubic law,indicating its weak oxidation resistance at this temperature.As the oxidation time increases,the composition of the oxide film evolves as following:One layer consisting of a bottom Al_(2)O_(3)sublayer and an upper(Al_(2)O_(3)+NiO)mixture sublayer after oxidized for 25 h.Then,two layers composed of an outermost small NiO discontinuous grain layer and an internal layer for 75 h.This internal layer is consisted of the bottom Al_(2)O_(3)sublayer,an intermediate narrow CrTaO_(4)sublayer,and an upper(Al_(2)O_(3)+NiO)mixture sublayer.Also two layers comprising an outermost relative continuous NiO layer with large grain size and an internal layer as the oxidation time increases to 125 h.This internal layer is composed of the upper(Al_(2)O_(3)+NiO)mixture sublayer,an intermediate continuous(CrTaO_(4)+NiWO_(4))mixture sublayer,and a bottom Al_(2)O_(3)sublayer.Finally,three layers consisting of an outermost(NiAl2O_(4)+NiCr2O_(4))mixture layer,an intermediate(CrTaO_(4)+NiWO_(4))mixture layer,and a bottom Al_(2)O_(3)layer for 200 h.展开更多
The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)signific...The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)significantly enriches photogenerated electrons at Ni active sites and enhances the performance for CO_(2) reduction into syngas.During photocatalytic CO_(2) reduction,Ni single‐atom‐anchored P‐modulated carbon nitride showed an impressive syngas yield rate of 85μmol gcat^(−1)h^(−1) and continuously adjustable CO/H_(2) ratios ranging from 5:1 to 1:2,which exceeded those of most of the reported carbon nitride‐based single‐atom catalysts.Mechanistic studies reveal that P doping improves the conductivity of catalysts,which promotes photogenerated electron transfer to the Ni active sites rather than dissipate randomly at low‐activity nonmetallic sites,facilitating the CO_(2)‐to‐syngas photoreduction process.展开更多
Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic partic...Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips.展开更多
Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,w...Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,we present a unipolar pulsed electrodeposition(UPED) strategy to induce strain in the Ni lattice by introducing trace amounts of Pt single atoms(SAs)(0.22 wt%).The overpotential decreased by 183 mV at 10 mA cm^(-2) in 1.0 M KOH after introducing trace amounts of Pt_(SAs).The industrial electrolyzer,assembled with Pt_(SAs)Ni cathode and a commercial NiFeO_(x) anode,requires a cell voltage of 1.90 V to attain 1 A cm^(-2) of current density and remains stable for 280 h,demonstrating significant potential for practical applications.Spherical aberration corrected scanning transmission electron microscopy(AC-STEM),X-ray absorption(XAS),and geometric phase analysis(GPA) indicate that the introduction of trace amounts of Pt SAs induces tensile strain in the Ni lattice,thereby altering the local electronic structure and coordination environment around cubic Ni for enhancing the water decomposition kinetics and fundamentally changing the reaction pathway.The doping-strain strategy showcases conformational relationships that could offer new ideas to construct efficient hydrogen evolution reaction(HER) electrocatalysts for industrial hydrogen production in the future.展开更多
In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three...In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three dishonest agents,Bob,Charlie and Emily can collude to obtain Alice's secret without the help of David.展开更多
We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction rev...We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction reveals that RhP_(2) adopts a monoclinic structure with the cell parameters a=5.7347(10)A,b=5.7804(11)A,and c=5.8222(11)A,space group P2_(1)/c(No.14).The electrical resistivityρ(T)measurements indicate that RhP_(2) exhibits narrow-bandgap behavior with the activation energies of 223.1 meV and 27.4 meV for two distinct regions,respectively.The temperaturedependent Hall effect measurements show electron domain transport behavior with a low charge carrier concentration.We find that RhP_(2) has a high mobilityμ_(e)~210 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_(e)~3.3×10^(18)cm^(3) at 300 K with a narrow-bandgap feature.The high mobilityμ_(e) reaches the maximum of approximately 340 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_^(e)~2×10^(18)cm^(-3)at 100 K.No magnetic phase transitions are observed from the susceptibilityχ(T)and specific heat C_(p)(T)measurements of RhP_(2).Our results not only provide effective potential as a material platform for studying exotic physical properties and electron band structures but also motivate further exploration of their potential photovoltaic and optoelectronic applications.展开更多
基金Supported by The National Natural Science Foundation of China,No.82350127 and No.82241013the Shanghai Natural Science Foundation,No.20ZR1411600+2 种基金the Shanghai Shenkang Hospital Development Center,No.SHDC2020CR4039the Bethune Ethicon Excellent Surgery Foundation,No.CESS2021TC04Xuhui District Medical Research Project of Shanghai,No.SHXH201805.
文摘BACKGROUND Transforming growth factor-β(TGF-β)superfamily plays an important role in tumor progression and metastasis.Activin A receptor type 1C(ACVR1C)is a TGF-βtype I receptor that is involved in tumorigenesis through binding to dif-ferent ligands.AIM To evaluate the correlation between single nucleotide polymorphisms(SNPs)of ACVR1C and susceptibility to esophageal squamous cell carcinoma(ESCC)in Chinese Han population.METHODS In this hospital-based cohort study,1043 ESCC patients and 1143 healthy controls were enrolled.Five SNPs(rs4664229,rs4556933,rs77886248,rs77263459,rs6734630)of ACVR1C were assessed by the ligation detection reaction method.Hardy-Weinberg equilibrium test,genetic model analysis,stratified analysis,linkage disequi-librium test,and haplotype analysis were conducted.RESULTS Participants carrying ACVR1C rs4556933 GA mutant had significantly decreased risk of ESCC,and those with rs77886248 TA mutant were related with higher risk,especially in older male smokers.In the haplotype analysis,ACVR1C Trs4664229Ars4556933Trs77886248Crs77263459Ars6734630 increased risk of ESCC,while Trs4664229Grs4556933Trs77886248Crs77263459Ars6734630 was associated with lower susceptibility to ESCC.CONCLUSION ACVR1C rs4556933 and rs77886248 SNPs were associated with the susceptibility to ESCC,which could provide a potential target for early diagnosis and treatment of ESCC in Chinese Han population.
基金support from Horizon 2020 program within the ITN FlowcampDZ acknowledges funding from the Wohl Foundation for research for the promotion of UK-Israel research cooperationDZ acknowledges funding from Israel Ministry of Energy(grant#220-11-047).
文摘Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs.
基金support from the Shenzhen Science and Technology Program(No.KQTD20190929173914967,ZDSYS20220527171401003,and JCYJ20200109110416441).
文摘Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs.
基金supported by the Natural Science Foundation of Sichuan Province(2022NSFSC1767)National Natural Science Foundation of China(32360828)。
文摘The hypothalamic-pituitary-ovarian(HPO)axis represents a central neuroendocrine network essential for reproductive function.Despite its critical role,the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined.This study provides the first comprehensive,unbiased,cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens.Within the hypothalamus,pituitary,and ovary,seven,12,and 13 distinct cell types were identified,respectively.Results indicated that the pituitary adenylate cyclase activating polypeptide(PACAP),follicle-stimulating hormone(FSH),and prolactin(PRL)signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone(GnRH),FSH,and luteinizing hormone(LH)within the hypothalamus and pituitary.In the ovary,interactions between granulosa cells and oocytes involved the KIT,CD99,LIFR,FN1,and ANGPTL signaling pathways,which collectively regulate follicular maturation.The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis.Additionally,gene expression analysis revealed that relaxin 3(RLN3),gastrin-releasing peptide(GRP),and cocaine-and amphetamine regulated transcripts(CART,also known as CARTPT)may function as novel endocrine hormones,influencing the HPO axis through autocrine,paracrine,and endocrine pathways.Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP,RLN3,CARTPT,LHCGR,FSHR,and GRPR in the ovaries of Lohmann layers,potentially contributing to their superior reproductive performance.In conclusion,this study provides a detailed molecular characterization of the HPO axis,offering novel insights into the regulatory mechanisms underlying reproductive biology.
基金supported by the National Natural Science Foundation of China (No.22309023,22179014)the project of Natural Science Foundation of Chongqing (Grant No.CSTB2022NSCQMSX0270)+3 种基金the China Postdoctoral Science Foundation (No.2022M720593)the youth project of science and technology research program of Chongqing Municipal Education Commission of China (Grant No.KJQN202201127)the Scientific Research Foundation of Chongqing University of Technology (2022ZDZ011,2022PYZ026)the special funding for research projects of Chongqing Human Resources and Social Security Bureau (Grant No.2022CQBSHTB1023)。
文摘The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual single atoms(DSAs)in a zinc-zeolitic imidazolate framework(Zn-ZIF),followed by calcination under an N_(2) atmosphere to synthesize ruthenium-platinum DSAs supported on a nitrogendoped carbon substrate(RuPt DSAs-NC).Theoretical calculations showed that the degree of Ru 5dxz-~*O 2p_x orbital hybridization was high when^(*)O was adsorbed at the Ru site,indicating enhanced covalent hybridization of metal sites and oxygen ligands,which benefited the adsorption of intermediate species.The presence of the RuPtN_6 active center optimized the absorption-desorption behavior of intermediates,improving the electrocatalytic performance of the oxygen reduction reaction(ORR)and the oxygen evolution reaction(DER),RuPt DSAs-NC exhibited a 0.87 V high half-wave potential and a 268 mV low overpotential at 10 mA cm^(-2)in an alkaline environment.Furthermore,rechargeable zinc-air batteries(ZABs)achieved a peak power density of 171 MW cm^(-2).The RuPt DSAs-NC demonstrated long-term cycling for up to 500 h with superior round-trip efficiency.This study provided an effective structural design strategy to construct DSAs active sites for enhanced electrocata lytic performance.
基金supported by the National Natural Science Foundation of China(51872115,12234018 and 52101256)Beijing Synchrotron Radiation Facility(BSRF,4B9A)。
文摘Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion.
基金funded by National Natural Science Foundation of China, grant numbers 62335006, 62274014, 62235016, 61734006, 61835011, 61991430funded by Key Program of the Chinese Academy of Sciences, grant numbers XDB43000000, QYZDJSSW-JSC027Beijing Municipal Science & Technology Commission, grant number Z221100002722018
文摘We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.
基金We appreciate the financial support from the National Natural Science Foundation of China(22272150,22102145)the Major Program of Zhejiang Provincial Natural Science Foundation(LD22B030002)+3 种基金Zhejiang Provincial Ten Thousand Talent Program(2021R51009)Zhejiang Provincial Natural Science Foundation of China(LQ23B030006,LY22B030012)Shandong Provincial Natural Science Foundation of China(2020MB053)the Fundamental Research Funds for the Central Universities(DUT22RC(3)084).
文摘Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical photocatalytic sites.We herein report an ion-loading pyrolysis route to in-situ anchor Pd single atoms as well as twinned Pd nanoparticles on ultra-thin graphitic carbon nitride nanosheets(PdTP/Pd_(SA)-CN)for high-efficiency photoreduction of CO_(2).The anchored Pd twinned nanoparticles donate electrons to adjacent single Pd–N_(4) sites through the carbon nitride networks,and the optimized PdTP/Pd_(SA)-CN photocatalyst exhibits a CO evolution rate up to 46.5μmol g^(-1) h^(-1) with nearly 100%selectivity.As revealed by spectroscopic and theoretical analyses,the superior photocatalytic activity is attributed to the lowered desorption barrier of carbonyl species at electron-enriched Pd single atoms,together with the improved efficiencies of light-harvesting and charge separation/transport.This work has demonstrated the engineering of the electron density of single active sites with twinned metal nanoparticles assisted by strong electronic interaction with the support of the atomic metal,and unveiled the underlying mechanism for expedited photocatalytic efficiency.
基金financially supported by the National Natural Science Foundation of China(22279036)the Innovation Talent Recruitment Base of New Energy Chemistry Device(B21003)the Fundamental Research Funds for the Central Universities(no.2019kfyRCPY100).
文摘Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined.
基金financially supported by the Natural Science Foundation of Jiangsu Province,China (BK20210887)the Jiangsu Provincial Double Innovation Program,China (JSSCB20210984)+1 种基金the Natural Science Fund for Colleges and Universities of Jiangsu Province,China (21KJB450003)the Jiangsu University of Science and Technology Doctoral Research Start-up Fund,China (120200012)。
文摘Nickel(Ni)-rich cathode materials have become promising candidates for the next-generation electrical vehicles due to their high specific capacity.However,the poor thermodynamic stability(including cyclic performance and safety performance or thermal stability)will restrain their wide commercial application.Herein,a single-crystal Ni-rich Li Ni_(0.83)Co_(0.12)Mn_(0.05)O_(2) cathode material is synthesized and modified by a dual-substitution strategy in which the high-valence doping element improves the structural stability by forming strong metal–oxygen binding forces,while the low-valence doping element eliminates high Li^(+)/Ni^(2+)mixing.As a result,this synergistic dual substitution can effectively suppress H2-H3 phase transition and generation of microcracks,thereby ultimately improving the thermodynamic stability of Ni-rich cathode material.Notably,the dual-doped Ni-rich cathode delivers an extremely high capacity retention of 81%after 250 cycles(vs.Li/Li+)in coin-type half cells and 87%after 1000 cycles(vs.graphite/Li^(+))in pouch-type full cells at a high temperature of 55℃.More impressively,the dual-doped sample exhibits excellent thermal stability,which demonstrates a higher thermal runaway temperature and a lower calorific value.The synergetic effects of this dual-substitution strategy pave a new pathway for addressing the critical challenges of Ni-rich cathode at high temperatures,which will significantly advance the high-energy-density and high-safety cathodes to the subsequent commercialization.
基金supported by the National Key Research and Development Program of China(2022YFB3205500)the National Natural Science Foundation of China(62371299,62301314 and 62101329)+2 种基金the China Postdoctoral Science Foundation(2023M732198)the Natural Science Foundation of Shanghai(23ZR1430100)supported by the Center for High-Performance Computing at Shanghai Jiao Tong University.
文摘Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research.
基金funded by the National Natural Science Foundation of China (Nos. 22279118, 31901272, 21401168, U1204203)National Science Fund for Distinguished Young of China (No. 22225202)+1 种基金Young Top Talent Program of Zhongyuan-YingcaiJihua (No. 30602674)Top-Notch Talent Program of Henan Agricultural University (No. 30501034)。
文摘Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are becoming popular materials because of their low cost, high electron conductivity, and controllable surface property. At the stage of catalysts preparation, the rational design of active sites is necessary for the substantial improvement of activity of catalysts. To date, the reported design strategies are mainly about synthesis mechanism and synthetic method. The level of understanding of design strategies of carbon-based single atom catalysts is requiring deep to be paved. The design strategies about manufacturing defects and coordination modulation of catalysts are presented. The design strategies are easy to carry out in the process of drawing up preparation routes. The components of carbon-based SACs can be divided into two parts: active site and carbon skeleton. In this review, the manufacture of defects and coordination modulation of two parts are introduced, respectively. The structure features and design strategies from the active sites and carbon skeletons to the overall catalysts are deeply discussed.Then, the structural design of different nano-carbon SACs is introduced systematically. The characterization of active site and carbon skeleton and the detailed mechanism of reaction process are summarized and analyzed. Next, the applications in the field of electrocatalysis for oxygen conversion and hydrogen conversion are illustrated. The relationships between the superior performance and the structure of active sites or carbon skeletons are discussed. Finally, the conclusion of this review and prospects on the abundant space for further promotion in broader fields are depicted. This review highlights the design and preparation thoughts from the parts to the whole. The detailed and systematic discussion will provide useful guidance for design of SACs for readers.
基金financially supported in China by the Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province (No. JC2018004)
文摘The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions.
基金supported by the National Key Research and Development Program of China(2022YFB3204700)the National Natural Science Foundation of China(52122513)+2 种基金the Natural Science Foundation of Heilongjiang Province(YQ2021E022)the Natural Science Foundation of Chongqing(2023NSCQ-MSX2286)the Fundamental Research Funds for the Central Universities(HIT.BRET.2021010)。
文摘Single atom catalysts(SACs)have garnered significant attention in the field of catalysis over the past decade due to their exceptional atom utilization efficiency and distinct physical and chemical properties.For the semiconductor-based electrical gas sensor,the core is the catalysis process of target gas molecules on the sensitive materials.In this context,the SACs offer great potential for highly sensitive and selective gas sensing,however,only some of the bubbles come to the surface.To facilitate practical applications,we present a comprehensive review of the preparation strategies for SACs,with a focus on overcoming the challenges of aggregation and low loading.Extensive research efforts have been devoted to investigating the gas sensing mechanism,exploring sensitive materials,optimizing device structures,and refining signal post-processing techniques.Finally,the challenges and future perspectives on the SACs based gas sensing are presented.
基金supported by the fund of State Key Laboratory of Long-life High Temperature Materials(Grant No.DTCC28EE200787)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2022JQ-553)+3 种基金the China Postdoctoral Science Foundation(Grant No.2021M692555)the Excellent Youth Foundation of Shaanxi Province of China(Grant No.2021JC-08)the Beilin district of Xi’an Science and Technology Project(Grant No.GX2123)the support from the Youth Innovation Team of Shaanxi Universities。
文摘The oxidation behavior of a novel Ni-based single-crystal 4774DD1 superalloy for industrial gas turbine applications was investigated by the isothermal oxidation at 980℃ and discontinuous oxidation weight gain methods.The phase constitution and morphology of surface oxides and the characteristics of the crosssection oxide film were analyzed by XRD,SEM and EDS.Results show that the oxidation kinetics of the 4774DD1 superalloy follows the cubic law,indicating its weak oxidation resistance at this temperature.As the oxidation time increases,the composition of the oxide film evolves as following:One layer consisting of a bottom Al_(2)O_(3)sublayer and an upper(Al_(2)O_(3)+NiO)mixture sublayer after oxidized for 25 h.Then,two layers composed of an outermost small NiO discontinuous grain layer and an internal layer for 75 h.This internal layer is consisted of the bottom Al_(2)O_(3)sublayer,an intermediate narrow CrTaO_(4)sublayer,and an upper(Al_(2)O_(3)+NiO)mixture sublayer.Also two layers comprising an outermost relative continuous NiO layer with large grain size and an internal layer as the oxidation time increases to 125 h.This internal layer is composed of the upper(Al_(2)O_(3)+NiO)mixture sublayer,an intermediate continuous(CrTaO_(4)+NiWO_(4))mixture sublayer,and a bottom Al_(2)O_(3)sublayer.Finally,three layers consisting of an outermost(NiAl2O_(4)+NiCr2O_(4))mixture layer,an intermediate(CrTaO_(4)+NiWO_(4))mixture layer,and a bottom Al_(2)O_(3)layer for 200 h.
基金Fundamental Research Funds for the Central Universities,Grant/Award Number:WK2060000016National Natural Science Foundation of China,Grant/Award Numbers:12222508,U1932213+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences,Grant/Award Number:2020454USTC Research Funds of the Double First‐Class Initiative,Grant/Award Number:YD2310002005National Key R&D Program of China,Grant/Award Number:2023YFA1506304。
文摘The key to designing photocatalysts is to orient the migration of photogenerated electrons to the target active sites rather than dissipate at inert sites.Herein,we demonstrate that the doping of phosphorus(P)significantly enriches photogenerated electrons at Ni active sites and enhances the performance for CO_(2) reduction into syngas.During photocatalytic CO_(2) reduction,Ni single‐atom‐anchored P‐modulated carbon nitride showed an impressive syngas yield rate of 85μmol gcat^(−1)h^(−1) and continuously adjustable CO/H_(2) ratios ranging from 5:1 to 1:2,which exceeded those of most of the reported carbon nitride‐based single‐atom catalysts.Mechanistic studies reveal that P doping improves the conductivity of catalysts,which promotes photogenerated electron transfer to the Ni active sites rather than dissipate randomly at low‐activity nonmetallic sites,facilitating the CO_(2)‐to‐syngas photoreduction process.
基金Project supported by the National Natural Science Foundation of China(Grant No.12305303)the Natural Science Foundation of Hunan Province of China(Grant Nos.2023JJ40520,2021JJ40444,and 2019JJ30019)+3 种基金the Research Foundation of Education Bureau of Hunan Province of China(Grant No.20A430)the Science and Technology Innovation Program of Hunan Province(Grant No.2020RC3054)the Natural Science Basic Research Plan in the Shaanxi Province of China(Grant No.2023-JC-QN-0015)the Doctoral Research Fund of University of South China。
文摘Convolutional neural networks(CNNs) exhibit excellent performance in the areas of image recognition and object detection, which can enhance the intelligence level of spacecraft. However, in aerospace, energetic particles, such as heavy ions, protons, and alpha particles, can induce single event effects(SEEs) that lead CNNs to malfunction and can significantly impact the reliability of a CNN system. In this paper, the MNIST CNN system was constructed based on a 28 nm systemon-chip(SoC), and then an alpha particle irradiation experiment and fault injection were applied to evaluate the SEE of the CNN system. Various types of soft errors in the CNN system have been detected, and the SEE cross sections have been calculated. Furthermore, the mechanisms behind some soft errors have been explained. This research will provide technical support for the design of radiation-resistant artificial intelligence chips.
基金National Natural Science Foundation of China (grants U22A20418, 22075196, and 21878204)Research Project Supported by Shanxi Scholarship Council of China (2022-050)。
文摘Strategically designing the electrocatalytic system and cleverly inducing strain is an effective approach to balance the cost and activity of Pt-based electrocatalysts for industrial-scale hydrogen production.Herein,we present a unipolar pulsed electrodeposition(UPED) strategy to induce strain in the Ni lattice by introducing trace amounts of Pt single atoms(SAs)(0.22 wt%).The overpotential decreased by 183 mV at 10 mA cm^(-2) in 1.0 M KOH after introducing trace amounts of Pt_(SAs).The industrial electrolyzer,assembled with Pt_(SAs)Ni cathode and a commercial NiFeO_(x) anode,requires a cell voltage of 1.90 V to attain 1 A cm^(-2) of current density and remains stable for 280 h,demonstrating significant potential for practical applications.Spherical aberration corrected scanning transmission electron microscopy(AC-STEM),X-ray absorption(XAS),and geometric phase analysis(GPA) indicate that the introduction of trace amounts of Pt SAs induces tensile strain in the Ni lattice,thereby altering the local electronic structure and coordination environment around cubic Ni for enhancing the water decomposition kinetics and fundamentally changing the reaction pathway.The doping-strain strategy showcases conformational relationships that could offer new ideas to construct efficient hydrogen evolution reaction(HER) electrocatalysts for industrial hydrogen production in the future.
基金Project supported by the Offline Course Program of“Experiment of College Physics”in the 2022-year Anhui Provincial Quality Engineering Program (Grant No.2022xxkc134)the Program for Academic Leader Reserve Candidates in Tongling University (Grant Nos.2020tlxyxs43 and 2014tlxyxs30)+1 种基金the Talent Scientific Research Foundation of Tongling University (Grant No.2015tlxyrc01)the 2014 year Program for Excellent Youth Talents in University of Anhui Province。
文摘In paper[Chin.Phys.B 32070308(2023)],Xing et al.proposed a semi-quantum secret sharing protocol by using single particles.We study the security of the proposed protocol and find that it is not secure,that is,the three dishonest agents,Bob,Charlie and Emily can collude to obtain Alice's secret without the help of David.
基金supported by the National Key Research and Development Program of China (Grant No.2017YFA0302901)the Strategic Priority Research Program,the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No.XDB33010100)+3 种基金the National Natural Science Foundation of China (Grant Nos.12134018,11921004,and 11634015)the Foundation of Quantum Science Center of Guangdong–Hong Kong–Macao Greater Bay Area,China (Grant No.QD2301005)the Postdoctoral Science Foundation of China (Grant No.2021M693370)the Synergetic Extreme Condition User Facility (SECUF)。
文摘We report the growth of high-quality single crystals of RhP_(2),and systematically study its structure and physical properties by transport,magnetism,and heat capacity measurements.Single-crystal x-ray diffraction reveals that RhP_(2) adopts a monoclinic structure with the cell parameters a=5.7347(10)A,b=5.7804(11)A,and c=5.8222(11)A,space group P2_(1)/c(No.14).The electrical resistivityρ(T)measurements indicate that RhP_(2) exhibits narrow-bandgap behavior with the activation energies of 223.1 meV and 27.4 meV for two distinct regions,respectively.The temperaturedependent Hall effect measurements show electron domain transport behavior with a low charge carrier concentration.We find that RhP_(2) has a high mobilityμ_(e)~210 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_(e)~3.3×10^(18)cm^(3) at 300 K with a narrow-bandgap feature.The high mobilityμ_(e) reaches the maximum of approximately 340 cm^(2)·V^(-1)·s^(-1)with carrier concentrations n_^(e)~2×10^(18)cm^(-3)at 100 K.No magnetic phase transitions are observed from the susceptibilityχ(T)and specific heat C_(p)(T)measurements of RhP_(2).Our results not only provide effective potential as a material platform for studying exotic physical properties and electron band structures but also motivate further exploration of their potential photovoltaic and optoelectronic applications.