In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical si...In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.展开更多
The steady recirculating flow behind a sudden expansion in a shallow channel is studied using the renormalization group (RNG) κ-ε model. The predicted recirculating flow and the reattachment length of the recircula...The steady recirculating flow behind a sudden expansion in a shallow channel is studied using the renormalization group (RNG) κ-ε model. The predicted recirculating flow and the reattachment length of the recirculating flow are well-supported by the reported experimental data. The computed effective viscosity, turbulence kinetic energy and its dissipation rate given by the RNG κ-ε model are smaller than that by the standard κ-ε model, while the reattachment length of the recirculating flow is larger. The RNG κ-ε medel overcomes the shortcoming of underpredicting the length of the recirculation zone by the standard κ-ε model.展开更多
基金supported by the National Natural Science Foundation of China(10472053 and 10772098)
文摘In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.
文摘The steady recirculating flow behind a sudden expansion in a shallow channel is studied using the renormalization group (RNG) κ-ε model. The predicted recirculating flow and the reattachment length of the recirculating flow are well-supported by the reported experimental data. The computed effective viscosity, turbulence kinetic energy and its dissipation rate given by the RNG κ-ε model are smaller than that by the standard κ-ε model, while the reattachment length of the recirculating flow is larger. The RNG κ-ε medel overcomes the shortcoming of underpredicting the length of the recirculation zone by the standard κ-ε model.